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I Introduction

The theory of detecting and correcting the error was first introduced by Claude Shannon in 1948 in his paper “Mathematical
Theory of Communication”. In his paper Shannon said that we can easily transmit any information by coding. There are number of
special codes such as cyclic codes, Linear codes, Group codes, polynomial codes etc. Our interest in this paper is to study a very
important class of codes called “Cyclic Codes”.

In general while examine cyclic codes over finite field F most often the code words are presented in polynomial
form. The correspondence between the n- vector C =CqCs...cn1 OVer F and the polynomial ¢(x)= co +Cix+...+cnax™t in F[X] of at
most n-1 degree is one to one and onto. This allows us the latitude of the vector notation C and the polynomial notation c(x) inter
changeably. Notice that if c(X) = co +Cix+...+cnaX™? then Xc(X) = cnaX" + Co X+Ci1X?+...+cn2X™! represents the code word C
cyclically shifted one to the right if x” were set equal to 1. Equivalently, as the cyclic code C is invariant under a cyclic shift
implies that if c(x) is in C then so is xc(x) provided we multiply modulo x"-1. This fact allows us for studying cyclic codes in the
residue class ring

R=T®
<x"-1>
It is also easily seen that
. :—F(X) = FC,
<x"-1>

where FC, is the group algebra of the cyclic group C, of order n over the field F. Under the correspondence of the vectors with
polynomials as given above, cyclic codes are ideals in R, and ideals in R are cyclic codes. Therefore, the study of cyclic code
over the finite field F is equivalent to the study of the ideals in R, or FC_, the group algebra of the cyclic group C, of order n over
the field F. It is well known that the study of ideals in R, completely depend on factorization of x"-1 over F. Interesting it is also
well known fact x"-1 has no repeated irreducible factors if and only if g.c.d(n, char(F)) =1. As F[x] is principal ideal domain then
50 is Ry. Thus a cyclic code, being ideal in Rn, may have a variety of generating polynomial.

Through out for our discussion of cyclic codes we make the basic assumption that char(F)- the characteristic of the field F
does not divide n- the length of the cyclic codes. This assumption also implies that R, is semi-simple and thus the Weddernburn
structure theorem is applicable. The theory of cyclic codes with g.c.d(n, char(F)) #1 is discussed in [van,cag1991], but today these
“repeated roots” cyclic codes don’t seems to be of much interest.

Besides the generating polynomial, there are many other polynomials that can be used to generate a cyclic code. One such
polynomial called an idempotent generator, can also be used to generate a cyclic code. As the ring R, is semi-simple therefore each
ideal in R, contains a unique idempotent which also generates the ideal. This idempotent is called the generating idempotent of the

corresponding cyclic code. The idempotent generating the minimal ideal (minimal code) in R, is called a Primitive idempotent.
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It is well known that the generating polynomial g(x) of the ideal in R, is a factor of x"-1. Thus the study of ideal through

the generating polynomial depends on the factorization of x"-1 over the field F. But the factorization of x"-1 into its irreducible
factors in itself is a very difficult problem. To overcome the problem of factorization, we deal with the idempotents that generates
the ideals. These idempotents then help us to describe the cyclic codes completely.
Let F=GF(1) be a finite field of order | and n be any integer such that char (F) does not divide n.
Consider the set

S=1{0,1,2,...,n-1}.
Fora, b € S,saythata~bifa=Dbl’ (mod n) for some integer i > 0. This is an equivalence relation on set S. The equivalence

classes of this relation are called | - cyclotomic class modulo n. The | -cyclotomic coset modulo n containing s S is

C, ={s,sl,sl?,...,sI“'},

where t; is the least positive integer with sl =s (mod n). Each cyclotomic coset is associated with an irreducible polynomial

in the semi simple ring R, :i
<

1 and hence is also associated with a primitive idempotent in R that generates a minimal
X" —1>

ideal in R, equivalently a minimal cyclic code over F. The number of |- cyclotomic class modulo n depends on t, the
multiplicative order of 1 modulo n, where 1<t <¢(n). Throughout the whole discussion we will assume that F is the field of

order g, the group is cyclic and is generated by g.

Primitive Idempotents in Cyclic Group Algebras:

Let Cpn =< g > be the Cyclic Group. Berman[2] described an explicit expressions for the (n+1) primitive idempotents in FCpn

(without proof), where q is the order of the field, is a prime number such that (q,p)=1 and is primitive root modulo p' for all i>1.
Blake and Mullin[3] declared that it is tedious to verify that these expressions are idempotents in FCpn . Arora and Pruthi[1] gave

an explicit expressions for the (n+1) primitive idempotents in FG(the group algebra of the cyclic group G of order p",p is an odd
prime,n>1) over the finite field F of prime power order q with (g,p) = 1 and q is primitive root modulo p".
In 1997, Arora-Pruthi[1] descried the (n+1) primitive idempotents of FCpn given by:

1 n, _
=—1 C
N(+;'J
and for 1<i<n,
1 _
= -1)(1+C. C C C
el pn((p )( + + ot ) ')

i+l i+2

where

C=2¢

seC;

In 1999, Pruthi-Arora[24] described the (2n+2) primitive idempotents in FC2pn given by:
n+l n+l
(ZC+ZCJ
n+l n+l
56 ZJ
]:

andforls|Sn,

p - j=i+l
1 n+l . _ . _
m= 2 pn—i+1 [( p- 1)[ Z (CJ _CJ )_( i _CI )JJ
j=i+l
where
C=209
seC;
and

seC;

In 2001, Manju Pruthi[4] described (m+1) primitive idempotents in F[W » 4 given by:
<X —1>
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sy
2 =)
And for 1<i<m,

e ZL.((].-FCP&-FC_HZ +...+Cm)— _.)

1 2m—|+l

where

o

seC;

In 2002, Arora, Batra, Cohen and Pruthi[5] described (2n+1) primitive idempotents given by:

e, :in[uzéj]
p =

and
~Lv+00)
2 1 1
« 1
==(Y, - 6G;
2( I |)

1 _ .
where Y.:W((p—l)(uc +C,,, +..+C,)- )

and G, = pnl,ﬂ (6,-C))
forl<i<n where if 6°=p ifp=4k+land 6> =—pifp=4k-1

where C =>'g°

seC;

and C=>g¢

SeCi*
Bakshi and Raka[6] gave the explicit expressions for the 3n+2 primitive idempotents in FCIDnr , Where p,q,r are distinct odd

#(p") ¢ _,
: .

primes, and q is a primitive root modulo p" and is a primitive root modulo r. And { —

The primitive idempotents are given by:

L [c +C +Z(c +C,+C, )]

e
" g

n-1

and e, = % {(q -1) Zn: Z +(a- 1)ZC Jr}

pq =0 =0
for0<j<n-1

e, =L 1{1+ 5 (6,+6,,+C,, +C, )}_L(cpn,ﬁqmn,.1+6pn,.1r)

P A pr
For 0< j<n-1, remaining 2n primitive idempotents are :
= (p 1)]8'; l) n];j A1_1_ nfjfl+%Bn_1C_a i
2p p r P p™ir P
e B R N e U €\ (e J RSP
C.+>C +—C ., +———= C,
2pj+1 {I;J P i;j ap} Zler P r thlr i:Zn—:j pr
. (p-D(r-1 1 = 1
ej = 2pj+lr + pn+j|’ anl p" j1 TJI’AF]_ ap" 1
n-1 _ _ _ 1l _
Pl ZC.+ C . —r.lcn,,,l+(p D=1 C,,
Zle i=n—j P i=n—j @ Zpﬁlr P ’ 2pj+l i=n—j

where C, = >"g° and

seC;
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pn—1(1+a) . #(p"r)

1 (o= pr)itg * = -1mod o
A= p”’l(l+ﬁ) #(p"r)
T,(ﬂzz_pr)ifq 2 = -1(mod p"q)
nigq #(p"r)
w,(az = pr)ifq 2 =-1(mod p"q)
B..=
nlgg #(p"r)
w,(ﬁz_ pr)lfq 2 = -1(mod p"q)

Sharma, Bakshi, Dumir and Raka[7] described the primitive idempotents in FCpn where ¢ is an odd prime power, may not be a

primitive root mod p", p is an odd prime with (q,p) = 1 and order of g modulo p is f, [pT_lq] =1 and q" =1+ pA. Also p does

not divide A (n>2) and (e,q) =1, where p=1+ef .
If g is primitive root modulo p then f =p-1.
The (en+1) primitive idempotents in FCpn are given by

& :%(H g+0°+..+ gp"’l),
pn-1

f — . : . ot
€= 9'+F{Po z g’+p1_ Z g%+ p, Z g+, z g° J}

ieC i ieC i ieC i, ieC i
it =it it it

f p"-1 1 . e-1
€ =12, 0+ p,ﬂ{pl Y g4, 3 g% 2 g Y G ‘}
pa |

IeCp",l,l ieC o\ j4 ieC i ieC i

ieC o jy ieC iy IEanl IEanl

f pn71| a a
eaelp’: i+l 9+ J+1{Pelzg+PoZg +p22gl+ +/’ezzg J}

where p, is an eigenvalue of the matrix A and ( p,, o, 95, P.1) IS the eigen vector corresponding to p, . The matrix A is given
by
Abo_ f A\)l_ f Aoz_ fo. A\)(e—l)_ f
Ao Ay Ay Ay
A= Azo A21 Azz AZ(e—l)

A(e-l)o A(e—l)l A(e-l)z o A(e-l)(e-l)

if f iseven, and is given by

Ay Ay Ay o AO(e—l)
Ao A A, v A

B A A Ao
T T e Qe

Ae—l)o Ae—l)l Ae—l)Z o Ae—l)(e—l)

if f isodd, where Ay is the number of ordered pairs (s,t), such that
g+ 1=g", 0<s,t<f-1.
Avrora, Batra and Cohen[8] discussed about the complete set of primitive idempotents in FC_, , the semi-simple group algebra of

¢()

the cyclic group C,, of order 2"(n=2) Also q is an odd prime with some prime power, where g has order modulo 2",

The 2n-1 primitive idempotents for q = 8k+3 are given by
g =Y,
1 :sz
en :Yl
and for 1<i<n-2,
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2(Y,+2 +26G,),

. 1

- =—(Y.,,, —20G,
=2 (Y0266,

i i+2

Wheree::\/zeGF(l) cF

The 2n primitive idempotents for q = 8k-3 are given by
& =Yo,
e, =Y,

and for 1<i<n-1,

6 =2 (Y, +206,),

i+l

« 1
) :2( 11— 26G,),

where 6::J—_1eGF(I) cF,and |l =char. F

C=>¢

seC;

CZg

Y= 1 [(1+C +C,+..+C, (C_:i+C_:i*))J

i on- i+l i+1 i+l
for 1<i<n.
For 1<i<n-2 and q=8k+3, G, = i C-C).
For 1<i<n-1 and q= 8k-3, Gi on- An—iHd (C C )

Arora and Batra[9] described the m|n|mal quadratic residue cyclic codes of length 2" .
If g is of the form 8k+3, then {qi [0<i<2"™? —1} , the set of integers modulo 2" accounts for all the odd numbers of the form

8m+3 or 8m+1.

The 2n-1 primitive idempotents for the case q = 8k+3 are given by
1 n-2 ., _ _ _
:F{H ;(Ci +C, )+(C0 +Cn_1+Cn)},
1 S ~ =
e, :F[z(u C,+C;+..+C,,+C,)~(C,+C;)],

n

e =2—1n[2<1+(_32 +(_22*+...+C_In,l+6n)—(61+éfﬂ

and for 1<i<n-2,

e = l_ [2{(1+CH3+C +..+C,_ +C) (6+2+ i:z)}_e(ci_éi*)]’

i — i+3
2n i+l

eo_ L [{(1+C +Cly+..+C,+C )- (C_2+C_i*+2)}+¢9(C_-—C_i*)]

i 2n—|+1 i+3

Wheree:zx/zeGF(l) cF andl=char. F
The 2n primitive idempotents for the case g = 8k-3 are given by

l n-1 ., _
=?[1+;(C‘+C‘ )+Cn},
(4G4 G € €L C ) (64 CY)]
and for 1<i<n-1,

g = 2n£+1 [{(:chz +Ci, +..+C ) (C_ _'+1)} 9( C, _C_i*ﬂ'

where 9::«/—_1€GF(I) cF,and

Ci:zgs

seC;
Ci* = Z g°
seC;

for 1<i<n.Arora and Batra described the primitive idempotents given by:
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eo:Eo

*

m=E
forl<i<n
1 — —
ei=§(E.+9G.)
R
e ZE(Ei—eGi)
1=  —.
m:g(Eiwe,)
« l(—= —*
7 =§(Ei aei)

where
6% = p if p=1(mod4), and
60* =—p, if p=-1(mod4)

and
Ei= Zp%”l [( p—l){((_ip' +Chy )+((_32p' +Conp )+
ET :ﬁ[( p_l){(EZpi +62hpi )_(Epi ‘f‘Ehpi )+

residue modulo p, then

G- ﬁ[(apu +Capt)~(Crw +Carw )]

Gl =i p}_m [(Cept ~Co ) ~(Carw ~Ci )]
If 2 is quadratic non-residue modulo p, then
G- ﬁ[(apu +Ca )~ (Cot +Cav )|

— 1 _ _ _ _
Gi = W[(C%pi’l -C p't ) —(CZpi’1 —Chpi’1 ):|
forl<i<n
Cp,,l => g

SeCp,,l
Chp' 1= Z gs

SEChp"l
Cou= 2 0

SECZp"l
_2hpi 1= z gs

SECth"l

C,=1
C,.=9 4

+ (1+ Cy )} - {(6 ot + Cpit ) + (Ezpﬂ +Congt )}}

+

(

1+Cp”

)

}

RN |

If 2 is quadratic

In 2010 S.K.Arora and Kulvir Singh [10] described an explicit expression for 4(n-1) primitive idempotents in FG , the semisimple
group algebra of the cyclic group G of order 2" (n>3) over the finite field F of prime power order q, where q is quadratic residue

modulo 2".
Then the primitive idempotents FC,, are given by

& =Y, ,

€uyn = Y,
1

€ayna = E[Yz - 26° Gyt G(3,4),1):| )
1

€2yna = E[Yz +26° (G(l,z),l + G(3,4),1)} )

for 1<i<n-2
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1

€wi = Z[ 2 -20° (Guzyin T Gayinn) —40(Gpay; + 6 Gua), .)}
1

€ = 4 |:YI+2 +26° (G(1,2),i+1 + G(3,4),i+1) - 49(‘92G(2,4),i + G(1,3),i )]!
1

e(3),i = Z[Ynz -20° (G(l,z),i+1 + G(3,4),i+l) + 49(G(2,4),i + 926(1,3),i ):| ’

1
€uyi = 4 [sz +26° (G(1,2),i+1 + G(3,4),i+1) + 49(926(2,4),i + G(l,3),i):|l

where ¢° =+/-1 and 0 GF () |being the characteristic of F and
for 1<i<nand 1<f<4,s, .= > ¢°

SeC(/,
. 1
for 1<i<n-2,1<lm<4 and I=m G, . :F(S(,)'i—sm)_i)
for 1<i<n,
n-2 4 4
Y= 2n prEri BE S S ( (1)n—1_S<2>,n1) wn [~ 2 S
j=i+l p=1 £=1
21

Zg

Agam S.K.Arora and Kulvir Singh describe the 8(n-2) primitive idempotents in the semisimple group algebra of the cyclic group
G of order 2" (n>4) over the finite field F of prime power order q, where q=8k+1 is a quadratic residue modulo 2".
FC,, has 8(n-2) primitive idempotents given by

*

& =Y €wn =Y,

€yt = %[YZ ~20°(Gy 21+ Caps) |» €yns = %[YZ +20°(Gy 41 +Ga) |
€ = %[\@ =20°(Gyyzy, +Gpay2) ~40(Gpr 1 + 0°Gyiy) |,
€z = %[Ys +20*(Gyyz), +Gps.ay2) —40(0°Gyp 4y, + Giisy) |,
€2 = %[Ys =20°(Gyyz), + Gpsy2) +40(Gpp 1 + 0°Gyi ) |,
€z = %[\g +20°(Gyy 2y, +Gpsy) +40(0°Gp 4y, +Gyr) |,

for 1<i<n-3

e, = %[Ym 20" Gyayisz +Caayiva) ~ 40(Gpaayins + 0°Cs) ~8VO(Glogyi + 08y, + 0y + Gy ) |,
€, = [Y,+3 +20% (G100 + Gpspinz) ~ 40(0°Gpy gy 3 + Gy 14) + 8 (Gl gy, — 0G(s), — 0°Clygy +0°Gisy ) |,
€y = %[Y =207 Gz + Gpsipinz) ~ 40(Gpy gy 11 + 0°Gpryy 1) + 8O (Gl ) — 0Gy, ~ Gy + 0G|,
€ = %[YI+3 +26%(Gyygy112 + Gpaayina) T 40(0°Cogy s + Gpgyi) —8O(Grsy + 0G0, +0°Clynyi +6°Gryg, )],
€ = %[Y =207 (Gpuayivz + Gpspina) ~40(Gpyay i1 + 0°Gprgy 1) + 8O (Gl +0Gg 1, +0°Glyy +0°Ggy ) |
&) = %[YHS +20° (G110 + Gpsayis2) ~ 400Gy 1.1 + Gragy 1) ~88 (Gl +0G(sg), +0°Gagy +0°Ciary) |
&, = %[Y =207 (Guayivz + Gpyiea) +40(Gpygy 1 + 0°Gpryy 1) ~8N0(Gis )y — 06, + Gy + 0°Gy ) |,
€ = é [Yiis 4267 (Gpayinz + Gpaayina) +40(0°Gpy gy 1 + Gy 1) + 8 (Gl + 0G5y, +0°Gy + 0%y ) |

Where 6?=+-1 and 6 ¢ GF(I) | being the characteristic of F and
for 1<i<n and 1<f<8, Sj;; = > ¢°

SEC (B

for 1<i<n—3, 1<I,m<8 and | #m G(.m).=%(35),i—sfm),i)

for 1<i<n-3,
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Gy =G+ Caar

Guay, = G(l 3 T G(s i

G(2,4),i = G(z it G(s 8),i?

G(3,4),i = G(s it G(7 8).i
for 1<i<n,

n-3 8 8
Y, = o H '{J Zs(ﬂ)l) ( @n-2 T 8(4)vn—2)+(8(l),n—1_S(Z)Vn 1) (1)n} ZS(,B)J}

=i+l g=1 =1

OTHER POSSIBILITIES:

Although, a number of codes have been found yet many problems exists for the primitive idempotents in the cyclic group
algebra.One of the main problem is to find out the primitive idempotents for the cyclic group FG, G is cyclic group of order m
[m=p" or p"r™ or n(any natural number)], and F is Field of order ¢, where order of g modulo m [m=p" or p"r™ or n(any natural
number)] respectively is any number t(say) with 1<t <g(m).
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