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Abstract: An autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series forecasting 

during the past three decades. Recently many environmental time series data can be adequately modelled using the seasonal 

ARIMA model. Different models for using time series approach such as Autoregressive (AR) models, Autoregressive Moving 

Average (ARMA) models, Autoregressive Integrated Moving Average (ARIMA) models are discussed. The methodology 

involves Initial Model Development Phase, Parameter Tuning Phase and Forecasting Phase.A seasonal ARIMA models applied 

on PM2.5 data extracted from the California Air Resource Board.The whole process carry the three step of Box Jenkin modelling 

identification, estimation and diagnostic. 
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I. Introduction 

Air pollution is an effected by many environmental factors, and the factors have a complicated correlation, its hard to explain 

the correlation with a structure casual model. At this time, it is an effective method to establish the time series dynamic model 

in accordance with its own law, and air pollution often have long-term trends, seasonal, cyclical, short-term fluctuations and 

irregular changes [1]. Particulate matter (PM) is a mixture of all microscopic solid and liquid particles, of human and natural 

origin, that remain suspended in a medium such as air for some time. These particles vary greatly in size, composition, and 

origin, and may be harmful. Particulate matter may be in the form of fly ash, soot, dust, fog, fumes etc. PM2.5 refers to particulate 

matter that is 2.5 micrometres or smaller in size. The sources of PM2.5 include fuel combustion from automobiles, power plants, 

wood burning, industrial processes, and diesel-powered vehicles such as buses and trucks. In this paper time series model has 

been applied on the PM-2.5 data, which was produced by the California Air Resources Board. 

Lon-Mu and Chung [2] employed time series analysis, in impact studies of environmental data. An iterative procedure for 

the joint estimation of model parameters and outlier effects was employed with the intervention analysis. They found that this 

joint estimation procedure not only produces more reliable estimates of intervention effects, but also provided information on 

outliers, which was valuable in many respects. 

Ynng et al. [3] applied the time-series analysis theory to analyse and forecast the dynamic variation of groundwater in west 

part of Jilin Province, China. First, the trend component of groundwater level dynamic variation was picked up by polynomial 

calibration, the periodic component was extracted by spectrum analysis and the stochastic component was simulated by using 

autoregression (AR) model. Finally, a forecasting model was established through linear superposition of these components and 

the method for verifying the accuracy of the model was suggested. The analysis of this model showed that there were two major 

periods in the variation of groundwater level in that area by which seasonal and secular variation of groundwater level was 

revealed. The prediction for years after 2002 indicated that a continuing decline of groundwater level exists in some district of 

that area, which must be controlled in time. 

Ghil et al. [4] provided crucial information to describe, understand, and predict climatic variability for the analysis of univariate 

or multivariate time series. They reviewed connections between time series analysis and nonlinear dynamics. The various steps, 

as well as the advantages and disadvantages of these methods, were illustrated by their application to an important climatic time 

series, the Southern Oscillation Index. This index captured major features of interannual climate variability and was used 

extensively in its prediction. 

The remainder of this paper is structured as follows: Section-2 introduces basic theory of time series forecasting. Section-3 

introduces basic theory of ARIMA models. Section-4 reports each step presented to analyse time series data using SARIMA 

model. Finally, Section-5 presents conclusion of the study is discussed. 

2 Basic theory of time series forecasting 

What Is Forecasting? Process of predicting a future event. Some of the areas in which forecasting plays an important role: 

• Scheduling 

• Acquiring resources 

• Determining resource requirements. 

Although there are many different area requiring forecasts, the preceding three categories are typical of the short-, medium-

, and long -term forecasting requirements of today’s organizations. Forecasting situation vary widely in their time horizons, 

factors determining actual outcomes, type of data patterns and many other aspects [5]. 
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2.1 Categorization of forecasting methods 

The appropriate forecasting methods depend largely on what information are available. 

1. Qualitative forecasting method: If little or no quantitative information is available, but sufficient qualitative knowledge 

exists, e.g., forecasting how a large increase in oil prices will affect the consumption of oil. 

2. Unpredictable forecasting method: If little or no information is available, e.g., predicting the effects of interplanetary 

travel. 

3. Quantitative forecasting method: If sufficient quantitative information is available. It can be applied when two conditions 

are satisfied: 

• Numerical information about the past is available. 

• It is reasonable to assume that some aspects of the past patterns will continue into the future and this is known as 

assumption of continuity [6]. 

 

2.1.1 Type of quantitative methods 

An additional dimension for classifying quantitative forecasting methods is to consider the underlying model involved. There 

are two major types of forecasting models: 

• Explanatory models: It assume that the variable to be forecasted exhibits an explanatory relationship with one or more 

independent variables. Regression model and multiple regression model are the example of explanatory models. 

• Time series models: Here, prediction of the future value is based on the past values of the same variable and / or past 

errors, but not on the explanatory variables which may affect the system. The objective of these models is to discover 

the pattern in the historical data series and extrapolate that pattern into future. Time series models used for forecasting 

include decomposition models, exponential smoothing models and ARIMA models [5]. 

 

2.2 Time series 

A time series is a sequence of observations taken sequentially in time. A time series is denoted by {Yt | t = 1,2,...,k}. Time series 

data can exhibit a variety of patterns: horizontal, seasonal, cyclical, trend and irregular. Many data series include combinations 

of the preceding patterns. General mathematical representation of decomposition approach is: 

 Yt = f(St,Tt,Et). (2.1) 

• Deterministic time series: If future values of a time series are exactly determined by some mathematical function such 

as 

 Yt = cos(2πft), (2.2) 

the time series is said to be deterministic. 

• Non-deterministic/Statistical time series: If future values can be described only in term of a probability distribution, the 

time series is said to be non-deterministic /statistical time series. 

 

2.2.1 Stochastic process 

A statistical phenomenon that evolves in time according to the laws of probability is called a stochastic process. 

1. Stationary stochastic process: A very special class of stochastic processes, called stationary processes, is based on the 

assumption that the process is in a particular state of statistical equilibrium. 

2. Strictly stationary stochastic process: A stochastic process is said to be strictly stationary if its properties are unaffected 

by a change of time origin i.e., if the joint probability distribution associated with m observations Yt1, Yt2, ... ,Ytm, made 

at any set of times t1, t2, ..., tm, is the same as that associated with m observations Yt1+k, Yt2+k, ..., Ytm+k, made at any set of 

times t1 + k, t2 + k, ..., tm + k. 

3. Non-stationary stochastic process: A stochastic process, which is not in the state statistical equilibrium i.e., the mean 

wanders (changes over time), and the variance (or standard deviation) is not reasonably constant over time. 

 

2.3 The basic steps in a forecasting task 

General guidelines which should be helpful in selecting the adequate model for a given data set have been explained in this 

section. The methodology to be followed to achieve the desired objectives includes following stages: 

 

2.3.1 Stages of forecasting 

1. Stationarity testing 

• Removing exponential trends. 

• Identifying polynomial and seasonal trends. 

• Testing for data stationarity through unit root testing. 

• Stationarizing time series through differencing. 

2. Model order selection and identification 

• Computing autocorrelation and partial autocorrelation (ACF AND PACF). 

• Selecting models using formal tests: Akaike’s information criterion (AIC). 

3. Parameter estimation 

• Selecting candidate ARIMA and GARCH models for a given data set. 

• Creating and fitting time series models to a data set. 
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4. Diagnostic analysis 

• Testing residuals for normality. 

• Analyzing model diagnostics. 

• Inferring model residuals. 

5. Forecast simulation  

• Forecasting data using fitted models. 

• Using in-sample forecasts to evaluate model appropriateness. 

 

3 Linear filter model 

The white noise at (a sequence of uncorrelated random variables with mean zero and constant variance, E[at] = 0, var[at] = σ2) 

is supposed transformed to the process Yt, by what is called a linear filter, as shown in Figure (1). The linear filtering operation 

simply takes a weighted sum of previous random shocks at, so that 

Yt = µ + at + ψ1 at-1 + ψ2 at-2 + ... (3.1) 

Yt = µ + ψ(B) at, (3.2) 

where ψ(B) = 1 + ψ1B + ψ2B2 + ... is a linear operator. If the sequence ψ1, ψ2 , is finite or infinite and absolutely summable, the 

filter is said to be stable and the process Yt is stationary. The parameter µ is then mean about which the process varies. Otherwise, 

Yt is non-stationary [7]. 

 

 

3.1 Autoregressive (AR) model 
In this model, the current value of the process is expressed as a finite, linear aggregate of the previous values of the process and 

the random shock at. Mathematically, an autoregressive (AR) process of order p for series Yt is given below: 

 Yt = c + φ1 Yt-1 + φ2 Yt-2 + ... + φ Yt-p  + at. (3.3) 

If we define an autoregressive operator of order p in term of backward shift operator B by 

                                                        φ(B) = 1 − φ1B − φ2B2 − ... − φp Bp,  (3.4) 

the autoregressive model (3.3) written as 

                                                       φ(B) Yt = c + at [5].    (3.5) 

This model contains p + 2 unknown parameters . 

Autoregressive model is the special case of the linear filter model. 

 

3.2 The moving-average (MA) model 

In this model, we take Yt   linearly dependent on a finite number q of previous a’s. Thus 

 Yt = c + (1 − θ1B − θ2B2 − ... − θq Bq ) at (3.6) 

 Yt = c + θ(B)at, (3.7) 

where c = constant term, θ(B) = 1 − θ1B − θ2B2 − ... − θq Bq is a moving average operator of order q. The model (3.7) contains q 

+ 2 unknown parameters . 

 

3.3 The autoregressive moving-average (ARMA) model 

To achieve greater flexibility in fitting of the actual time series, it is sometimes advantageous to include AR and MA term in the 

model. 

 φ(B)Yt = c + θ(B) at. (3.8) 

The model (3.8) contains p + q + 2 unknown parameters . 

3.4 The autoregressive integrated moving-average (ARIMA) model 

The ARMA models, described above can only be used for stationary time series data. However, load time series show non-

stationary behaviour. In ARIMA models a non-stationary time series is made stationary by applying finite differencing of order 

(d) of the data points. The mathematical formulation of the ARIMA (p, d, q) model is given below: 

 φ(B) (1 – B )d  (Yt − µ) = θ(B) at, (3.9) 

where backward difference operator is ∇ = 1 − B and d is the number of regular differences. 
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3.5 Seasonal autoregressive integrated moving average (SARIMA) model 

The seasonal difference operator is ∇s = 1−Bs, where s is the period of the seasonal cycle. Seasonal differencing will remove 

seasonality in the load series in the same way that ordinary differencing will remove a polynomial trend. A time series {Yt | t = 

1,2..., k} is generated by SARIMA (p, q, r) (P, D, Q) s process with mean µ of Box and Jenkin time series model if 

 φ(B) Φ(Bs) (1 – B  )d  (1 − Bs)D (Yt − µ) = θ(B)Θ(Bs)at, (3.10) 

where p, d, q, P, D, Q are integer; φ(B) = 1−φ1B−φ2B2...−φp Bp,  Φ(Bs) = 1−Φ1Bs−Φ2B2s−...−ΦPBPs, θ(B) = 1 − θ1B − θ2B2 − ... − 

θqBq, Θ(Bs) = 1 − Θ1Bs − Θ2B2s − ... − ΘQBQs, are polynomial of degree p, q, P and Q. B is the backward shift operator, D is the 

number of seasonal differences. The at should be independently and identically distributed (iid). The roots of φ(B) and θ(B) 

should all lie outside the unit circle [8]. 

 

4 Data Processing and implementation 

A monthly average is calculated from January 1999 to January 2006.The data is organized in a data frame, with value as rows 

and days as columns and the data is 12 x 8, with no missing data, so we have 96 observations for each variable. Time series data 

are divided into training data (84) and test data (12). The training data were used for estimating the model and the test data were 

used to measure the resulting model’s error. The data are plotted as shown in Figure 2. 

 

 

 

 

 

                                                  Figure 3: First Difference of Log (PM2.5) Levels  
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Figure 3: shows the time series plot of the log (PM2.5) levels after we take a first difference. The downward trend has now 

disappeared. The numbers of AR and MA can be identified in a more systematic way by ACF and PACF plot. 

The fitted model is the following 

  (1 − B) (1 − B12) Yt
 = (1 + θ1B) (1 + Θ1B12) at (4.1) 

Yt = Yt-1 + Yt-12 − Yt-13 + at + θ1 at-1 + Θ1 at-12 + θ1 Θ1 at-13. (4.2) 

 

                                                   Table 1:  Parameter Estimation 

 

 

 

 

 

 

 

 

 

Thus, our fitted SARIMA (0,1,1) (0,1,1)12 model is: 

Yt = Yt-1 + Yt-12 − Yt-13 + at + .8645 at-1 + .6894at-12 +.8645 *.6894 at-13. (4.3) 

 

Diagnostic checking is necessary to ensure the best forecasting model has been built. The estimated SARIMA (0,1,1) 

(0,1,1)12 model, provide the residual. Figure4: gives the time series plot of the residuals. The residuals even balance 

out around zero, it seems constant. And neither additive outliers nor innovative outliers have been detected.  

 

 

 

 
 
To take a further look, we have plotted the sample ACF of the residuals. The sample autocorrelation   function (ACF) 

plot with the vertical axis is almost close to 0 as in figure 5. 

 

 

Coefficient VALUE SE 

θ1 0.8645 0.0790 

Θ1 0.6894 0.1268 

AIC 495.3  

                                       Figure 4: time series plot of the residuals. 

                                             Figure 5: ACF of Residuals Plot 
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From the histogram (figure 6) of the residual it can be easily seen that the center seems a little bit off from zero, and the shape 

of histogram appears good shaped. 

 

 

 
 

 

 

 

 

 

5. Forecasting Result 

Figure 7: shows the forecasts and prediction interval with 95percent limits for a led time of one year for the SARIMA (0,1,1) 

(0,1,1)12. 

 
 

The last one year of observed data is also shown. The forecasts mimic the stochastic periodicity in the data quite well, and the 

forecast limit give a good feeling for the precision of the forecasts. 

 

6. Conclusion 

In this study, SARIMA model was applied to predict the existing trend and seasonality in the PM2.5 data. The forecasting 

model was developed using ARIMA method in MATLAB 2017a software. The results indicate that SARIMA (0,1,1) (0,1,1)12 

is a suitable model based on analyzed historical data. The forecast of PM2.5 illustrates the pattern as well as the seasonality of 

the data. The model will be helpful to predict the air pollution PM2.5. For further work, it is still needed to evaluate and 

compare with other forecasting methods to obtain a better accuracy of forecast value. 
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