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Abstract  

The aim of this paper is to develop an explicit finite difference scheme for one dimensional time fractional bioheat 

transfer equation. We also show that the scheme is stable and convergent conditionally. As an application of this 

scheme numerical solution for a skin-heating model is discussed with the help of Mathematica software. 
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1. INTRODUCTION 
 

In the present scenario fractional calculus plays an important role in the various fields of scientific and 

engineering problems. Fractional partial differential equations have many applications in engineering, 

physics, hydrology and finance [8]. Therefore, partial differential equations of fractional order have been 

successfully used for modelling relevant physical process studied in [2, 5, 6, 8, 10]. In this connection as 

an interest, we develop the finite difference scheme for one dimensional time fractional bioheat equation 

(TFBHE). To date, the numerical methods and analysis of the fractional order partial differential 

equations are limited; some numerical methods for solving the space or time fractional partial differential 

equations have been studied in [2, 5, 6, 8]. The thermal life phenomenon and temperature behaviour in 

living tissue is well studied in an elegant book by Chato [1]. It is necessary for modern clinical treatments 

and medicines such as Cancer hyperthermia, Cryopreservation, Cryosurgery and thermal disease 

diagnostics. The problems of bioheat transfer in human body have been studied by many researchers and 

contributed for designing clinical thermal treatment equipments, which are useful for accurate medical 

diagnosis. In the year 1948, Penne’s established a celebrated model ”Analysis of tissue and arterial 

temperature in the resting human forearm ” which is devoted for the study of the problem of bioheat 

transfer in living tissue [7], the main ingredient is the classical Fourier law. The Penne’s equation is the 

most widely used in the study of various models in heat transfer in living tissue [3, 4]. 

The original one dimensional Pennes bioheat transfer equation is [7]: 

C 
𝜕𝜃∗

𝜕𝑡
 + wb cb

* = 
𝜕

𝜕𝑥
(𝑘(𝑥)

𝜕𝜃∗

𝜕𝑥
) + Qr , 0 < x < L                           (1.1) 

 −the density of tissue; 

  c −specific heat of tissue; 

 k −thermal conductivity of tissue; 

 wb −blood perfusion rate; 

 cb −specific heat of blood; 

 Qr −the volumetric heat due to spatial heating which is constant; 

 L −distance between skin surface and the body core: 

Note that ∗ = T(x, t) - Ts , is the elevated tissue temperature, where T(x, t) represents the temperature and Ts 

is the skins steady state temperature. We consider the one dimensional time fractional bioheat transfer 

equation: 
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C 
𝜕𝜃∗

𝜕𝑡
 + wbcb

* = 
𝜕

𝜕𝑥
(𝑘(𝑥)

𝜕𝜃∗

𝜕𝑥
) + Qr , 0 < x < L, 0 < α< 1                         (1.2) 

where variable coefficient k(x) > 0. If α = 1 then above equation becomes Pennes bioheat transfer equation. 

The Caputo fractional derivative of order α is defined as 

𝜕𝛼𝜃

𝜕𝑡𝛼
  = {

1

Γ(1−𝛼)
∫

𝜕𝜃(𝑥,𝜉)

𝜕𝜉

𝑡

0

𝑑𝜉

(𝑡−𝜉)𝛼

  
𝑑𝜃(𝑥,𝑡)

𝑑𝑡
, 𝛼 = 1                         

 ,  0 < α< 1 

We divide equation (1.2) by c, we get 

𝜕𝜃∗

𝜕𝑡
 + 
𝑤𝑏𝑐𝑏

C
 (*- 𝑄𝑟

𝑤𝑏𝑐𝑏
)= 

1

𝜌𝑐
 
𝜕

𝜕𝑥
(𝑘(𝑥)

𝜕𝜃∗

𝜕𝑥
), 0 < x < L, 0 < α< 1                                    (1.3) 

Now, we have to assume the following basic assumptions: 

 = (*- 𝑄𝑟

𝑤𝑏𝑐𝑏
) , a = 

𝑤𝑏𝑐𝑏

C
  > 0, b = 

1

𝜌𝑐
 > 0 

We arrived at the one dimensional time fractional bioheat transfer equation with initial and boundary 

conditions: 

𝜕

𝜕𝑡
 + 𝑎  =  

𝜕

𝜕𝑥
(𝑘(𝑥)

𝜕

𝜕𝑥
), 0 < x < L, 0 < α < 1                                                            (1.4) 

initial condition :  (x, 0) = 0                               (1.5) 

boundary conditions :  (0, t) = 0;   x(L, t) = 0; t ≥ 0                                      (1.6) 

The structure of the paper is as follows: In section 2, we develop time fractional order explicit finite 

difference scheme for skin heating model governed by bioheat transfer equation. The section 3, is devoted 

for stability analysis of the model and the question of convergence is proved in section 4. Finally, we obtain 

the numerical solution of skin heating model using Mathematica software and by the numerical example it is 

shown that the numerical results are in good agreement with our theoretical analysis in the last section.  

We developed a fractional order explicit finite difference scheme for one dimensional time fractional 

bioheat transfer equation (TFBHE) in the next section. 

 

2 AN EXPLICIT FINITE DIFFERENCE SCHEME 
 

We first introduce the finite difference approximation to discritize the time fractional derivative. We define 

tk = kΔt, k = 0,1, ..., N, xi = iΔx, i = 0, 1, ..., M, where Δt = T /N and Δx = L /M are the time and space steps 

respectively. Let  (xi; tk), i = 0, 1, ..., M, 

 k = 0, 1, ... , N be the exact solution of the TFBHE (1.4)-(1.6) at mesh point (xi; t k). Let θ𝑖
𝑘  be the 

numerical approximation of the point (iΔx; kΔt). In the differential equation (1.4), the time fractional 

derivative term is approximated by the following scheme: 

 

𝜕𝛼𝜃(𝑥𝑖, 𝑡𝑘+1)

𝜕𝑡𝛼
≈

1

Γ(1 − 𝛼)
∑
𝜃(𝑥𝑖, 𝑡𝑗+1) − 𝜃(𝑥𝑖, 𝑡𝑗)

∆𝑡

𝑘

𝑗=0

∫
1

(𝑡𝑘+1 − 𝜉)𝛼

(j+1)∆t

j∆t

𝜕𝜉 

 

This is simplified as: 
𝜕𝛼𝜃(𝑥𝑖,𝑡𝑘+1)

𝜕𝑡𝛼
=

(∆t)−𝛼

Γ(2−𝛼)
[𝜃(𝑥𝑖, 𝑡𝑗+1) -  (𝑥𝑖, 𝑡𝑗)] + 

(∆t)−𝛼

Γ(2−𝛼)
 ∑ 𝑑𝑗
𝑘
𝑗−1 [𝜃(𝑥𝑖, 𝑡𝑘−𝑗+1) -  (𝑥𝑖, 𝑡𝑘−𝑗)] 

Where dj =[(𝑗 + 1)1−𝛼 − 𝑗1−𝛼],  j= 0,1, 2, …..,k  

Using the time fractional approximation for TFBHE (1.4) − (1.6), we get 

    

𝜃𝑖
𝑘+1 - 𝜃 𝑖

𝑘 + ∑ 𝑑𝑗[𝜃𝑖
𝑘−𝑗+1 − 𝜃𝑖

𝑘−𝑗  ]𝑘
𝑗=1 + 𝑟1 (𝜃𝑖

𝑘+1 +𝜃𝑖
𝑘−𝑗

) = 𝑟2[k( 𝑥𝑖)𝜃𝑖−1
𝑘 − (k(𝑥𝑖) +  k(𝑥𝑖+1))𝜃𝑖

𝑘 +k(xi+1) 𝜃𝑖+1
𝑘 ]    

       

Where  𝑟1 = 
(𝑎∆t)𝛼Γ(2−𝛼)

2
 ,  𝑟2= 𝑏

(∆t)𝛼Γ(2−𝛼)

(∆𝑥)2
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After simplification, 

𝜃𝑖
𝑘+1 = 𝑐1k( 𝑥𝑖)𝜃𝑖−1

𝑘  + 𝑐2[1-𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝜃𝑖
𝑘+ 𝑐1k( 𝑥𝑖+1)𝜃𝑖+1

𝑘  - 𝑐2∑ 𝑑𝑗[𝜃𝑖
𝑘−𝑗+1

− 𝜃𝑖
𝑘−𝑗
 ]𝑘

𝑗=1  

where 𝑐1 = 
𝑟2

1+𝑟1
 , 𝑐2 = 

1

1+𝑟1
 and 𝑑𝑗  =[(𝑗 + 1)1−𝛼 − 𝑗1−𝛼],  j= 0,1, 2, …..,k 

The initial condition 𝜃(𝑥𝑗, 0) = 0 implies 𝜃𝑖
0= 0, i = 1, 2 ,..., M, as well as the boundary conditions 𝜃(0, 𝑡𝑘) = 

𝜃0 implies 𝜃0
𝑘  = 𝜃0, θx(L, 𝑡𝑘) = 0 implies  𝜃𝑀+1

𝑘   = 𝜃𝑀−1
𝑘 for k = 0, 1, 2, ...,N. 

Therefore, discretization of the problem (1.4) − (1.6) is: 

𝜃𝑖
𝑘+1 = 𝑐1k( 𝑥𝑖)𝜃𝑖−1

𝑘  + 𝑐2[1-𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝜃𝑖
𝑘+ 𝑐1k( 𝑥𝑖+1)𝜃𝑖+1

𝑘  - 𝑐2∑ 𝑑𝑗[𝜃𝑖
𝑘−𝑗+1

− 𝜃𝑖
𝑘−𝑗
 ]𝑘

𝑗=1   

                       (2.1) 

initial condition  𝜃𝑖
0= 0, i = 1, 2 ,..., M,                             (2.2) 

boundary conditions  𝜃0
𝑘  = 𝜃0, 𝜃𝑀+1

𝑘   = 𝜃𝑀−1
𝑘 for k = 0, 1, 2, ...,N.               (2.3) 

Where  𝑟1 = 
(𝑎∆t)𝛼Γ(2−𝛼)

2
 ,  𝑟2= 𝑏

(∆t)𝛼Γ(2−𝛼)

(∆𝑥)2
 and  𝑐1 = 

𝑟2

1+𝑟1
 , 𝑐2 = 

1

1+𝑟1
 

An explicit finite difference scheme have a truncation error of the order O[(Δt)1-α, (Δx)2]; 

Putting k = 0 in equation (2.1) and boundary conditions, we get 

𝜃𝑖
1 = 𝑐1k( 𝑥𝑖)𝜃𝑖−1

0  + 𝑐2[1-𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝜃𝑖
0+ 𝑐1k( 𝑥𝑖+1)𝜃𝑖+1

0                 (2.4) 

putting k = 1,2,… ,N-1 in equation (2.1), we get 

∑ 𝑑𝑗[𝜃𝑖
𝑘−𝑗+1

− 𝜃𝑖
𝑘−𝑗
 ]𝑘

𝑗=1  = 𝑑1𝜃𝑖
𝑘  + ∑ (𝑑𝑗+1 − 𝑑𝑗)

𝑘−1
𝑗=1 𝜃𝑖

𝑘−𝑗
 - 𝑑𝑘𝜃𝑖

0 

Therefore, equation (2.1) can be written as 

𝜃𝑖
𝑘+1 = 𝑐1k( 𝑥𝑖)𝜃𝑖−1

𝑘 +𝑐2[1- 𝑑1 - 𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝜃𝑖
𝑘+𝑐1k( 𝑥𝑖+1)𝜃𝑖+1

𝑘 + 𝑐2∑ (𝑑𝑗 − 𝑑𝑗+1)
𝑘−1
𝑗=1 𝜃𝑖

𝑘−𝑗
  

+ 𝑐2𝑑𝑘𝜃𝑖
0                                       (2.5) 

Therefore the system of algebraic equations (2.1)−(2.3) can be written in the following form of the matrix 
equations form: 

𝜃1 = A 𝜃0 + C                      (2.6) 

𝜃𝑘+1 = (A+D) + C + 𝑐2 ∑ (𝑑𝑗 − 𝑑𝑗+1)
𝑘−1
𝑗=1 𝜃𝑖

𝑘−𝑗
 + 𝑐2𝑑𝑘𝜃𝑖

0                (2.7) 

𝜃0 = 0                        (2.8) 

where A = (aij ) is a square matrix of coefficients and C = (c1k(x1) 𝜃0,..., 0)
T
 is matrix of order M × 1 

and D = diagonal(−c2d1,..., −c2d1). The coefficients for i = 1, 2, ..., M and j = 1, 2, ... M are 

𝑎𝑖𝑗 = {

0,                                                                                              𝑤ℎ𝑒𝑛 𝑗 ≥ 𝑖 + 1 

𝑐1k( 𝑥𝑖+1),                                                                             𝑤ℎ𝑒𝑛 𝑗 = 𝑖 + 1

𝑐2[1 − 𝑑1  −  𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))],            𝑤ℎ𝑒𝑛 𝑗 = 𝑖

 

                                  {
 𝑐1k( 𝑥𝑖),                                                                                  𝑤ℎ𝑒𝑛 𝑗 = 𝑖 − 1
0,                                                                                                𝑤ℎ𝑒𝑛 𝑗 ≤ 𝑖 − 2

              

 

3 STABILITY 
 

In this section we discuss, the stability of solution of the discrete TFBHE (2.1) − (2.3) we prove the 
following result. 

 

Theorem 3.1 The solution of the time fractional explicit finite difference scheme (2.1) − (2.3) for 

TFBHE (1.4) − (1.6) is conditionally stable. 
 

Proof: Consider the matrix equation form of the discrete time fractional finite difference scheme (2.1) − 

(2.3), 
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𝜃1 = A 𝜃0 + C                      (3.1) 

𝜃𝑘+1 = (A+D) 𝜃𝑘  + C + 𝑐2 ∑ (𝑑𝑗 − 𝑑𝑗+1)
𝑘−1
𝑗=1 𝜃𝑖

𝑘−𝑗
 + 𝑐2𝑑𝑘𝜃𝑖

0               (3.2) 

𝜃0 = 0                        (3.3) 

For k = 0 from (3.1), we have 
 

𝐴    =

(

 
 
 
 
 
 
 
 

𝑎11 𝑐1𝑘(𝑥2) ⋯ 0

𝑐1𝑘(𝑥2) 𝑎22 𝑐1𝑘(𝑥3) 0

⋮ ⋮⋱ ⋮⋱ ⋮⋱ ⋮

0 … 𝑐1𝑘(𝑥𝑖) 𝑎𝑖𝑖 𝑐1𝑘(𝑥𝑖+1) 0

⋮  
⋮⋱ ⋱ ⋮⋱ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 … … … ⋀ 𝑎𝑀𝑀)

 
 
 
 
 
 
 
 

 

 

is a square matrix of order M and 𝑎𝑖𝑖 = c2[1 − r1 − r2(k(xi) + k(xi+1))],  i = 1,2,..., M and 
 ∧ = 𝑐1(k(𝑥𝑀) +  k(𝑥𝑀+1)), 𝜃

𝑘  = (𝜃1
𝑘 , 𝜃2

𝑘  , … , 𝜃𝑀
𝑘 )𝑇 and C = (𝑐1𝑘(𝑥1)𝜃0, 0, … ,0)

𝑇 
In equation (3.1) each component of the last column vector C is constant and hence the propagation of 
the error depends on matrix A. From matrix A, we have the central diagonal element for each row i = 

1(1)M is aii = c2[1 − r1 − r2(k(xi) + k(xi+1))] and sum of off diagonal elements for each row i = 1(1)M is 

     c1(k(xi) + k(xi+1)). 
 

Let  be an eigenvalue of the matrix A to the linear system of equation (3.1). According to 
Greschgorin’s theorem [4] shows that the each eigenvalue of matrix A lie in union of the circles centred 

at 𝑎𝑖𝑖 with radius ∑ |𝑎𝑖𝑗|
𝑀−1
𝑗=1,𝑗≠𝑖 . 

| − 𝑎𝑖𝑖| < ∑ |𝑎𝑖𝑗|
𝑀−1
𝑗=1,𝑗≠𝑖                                                                                                                      (3.4) 

 
| − 𝑐2[1 − 𝑟1 − 𝑟2(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1))]| < 𝑐1(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1))              (3.5) 
 
substituting c1 and c2 in equation (3.5) and solving  it gives, 
 
 

−
𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1)) < −

1

1+𝑟1
[1 − 𝑟1 − 𝑟2(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1))] <  

𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1)) 

    on simplification which gives, 

 
1−𝑟1 

1+𝑟1
 - 

2𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1))<  <  

1−𝑟1

1+𝑟1
 < 1 

For stability, we have -1 <  < 1. 

 

The equations will be stable when, -1 < 
1−𝑟1 

1+𝑟1
 - 

2𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1)) 

which implies, 𝑟2 < 
1

(𝑘(𝑥𝑖)+𝑘(𝑥𝑖+1))
  < 

1

(𝑘(𝑥𝑀)+𝑘(𝑥𝑀+1))
 ≤ 
1

2
  for i = 1, 2, ....,M+1 

 

For k = 1,2,...,N-1, consider the equation (3.2), 

 

𝜃𝑘+1 = B𝜃𝑘  + C + 𝑐2∑ (𝑑𝑗 − 𝑑𝑗+1)
𝑘−1
𝑗=1 𝜃𝑖

𝑘−𝑗
 + 𝑐2𝑑𝑘𝜃𝑖

0                (3.6) 

where B = A + D. Here each component of the vectors C, 𝜃0 and ∑ (𝑑𝑗 − 𝑑𝑗+1)
𝑘−1
𝑗=1 𝜃𝑖

𝑘−𝑗
 are constant and 

hence propagation of error depends on matrix B, where  

http://www.ijrar.org/
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𝐵    =

(

 
 
 
 
 
 
 
 

𝑎11 𝑐1𝑘(𝑥2) ⋯ 0

𝑐1𝑘(𝑥2) 𝑎22 𝑐1𝑘(𝑥3) 0

⋮ ⋮⋱ ⋮⋱ ⋮⋱ ⋮

0 … 𝑐1𝑘(𝑥𝑖) 𝑎𝑖𝑖 𝑐1𝑘(𝑥𝑖+1) 0

⋮  
⋮⋱ ⋱ ⋮⋱ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 … … … ⋀ 𝑎𝑀𝑀)

 
 
 
 
 
 
 
 

 

 

is a square matrix of order M and 𝑎𝑖𝑖 = c2[1 − r1 − r2(k(xi) + k(xi+1))],  i = 1,2,..., M and 
 ∧ = 𝑐1(k(𝑥𝑀) +  k(𝑥𝑀+1)). Again by using equation (3.4) we get, 
 

−
𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1)) < −

1

1+𝑟1
[1 − 𝑑1 − 𝑟1 − 𝑟2(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1))] <  

𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1)) 

 

For stability we consider, 

-1 <  
1

1+𝑟1
[1 − 𝑑1 − 𝑟1 − 𝑟2(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1))] -   

𝑟2

1+𝑟1
(𝑘(𝑥𝑖) + 𝑘(𝑥𝑖+1)) 

∴ 𝑟2 <  
1

(𝑘(𝑥𝑖)+𝑘(𝑥𝑖+1))
  < 

1

(𝑘(𝑥𝑀)+𝑘(𝑥𝑀+1))
 ≤ 
1

2
  for i = 1, 2, ....,M+1 

Hence the proof. 

 

4.      CONVERGENCE 

In this section we discuss the question of convergence. 
Theorem 4.1 The finite difference scheme (2.1) − (2.3) for TFBHE (1.4) − (1.6) is convergent. 

Proof: Let Ω be the region 0 < x < L, 0 < t < T: Take (xi , tk) = (i∆x, k∆t) f or i = 0,1, ..., M and k = 0, 1, 

..., N with M∆x = L; N∆t = T: We introduce the vector 
∗∗n

 = [ (x0, tk),..., (xi, tk),..., (xM ,tk)]
T
 

satisfying the finite difference scheme (2.1) − (2.3). We get, 


∗∗k+1 = 𝑐1k( 𝑥𝑖)𝜃𝑖−1

∗∗𝑘
+𝑐2[1 - 𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝜃𝑖

∗∗𝑘+𝑐1k( 𝑥𝑖+1)𝜃𝑖+1
∗∗𝑘 

                               −𝑐2∑ 𝑑𝑗[𝜃𝑖
∗∗𝑘−𝑗+1

− 𝜃𝑖
∗∗𝑘−𝑗

 ]𝑘
𝑗=1 + 𝜏𝑘                 (4.1) 

where 𝜏𝑘  is the vector of the truncation errors at level tk, 

𝜃∗∗0 = 0, 𝜃∗∗k = 𝜃0, 𝜃𝑀+1
∗∗𝑘  = 𝜃𝑀−1

∗∗𝑘 , Now, subtract (2.1) from (4.1), we get, 

(
∗∗k+1-𝜃𝑖

𝑘+1 ) = 𝑐1k( 𝑥𝑖) (𝜃𝑖−1
∗∗𝑘 − 𝜃𝑖−1

𝑘 )+𝑐2[1 - 𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] (𝜃𝑖
∗∗𝑘 − 𝜃𝑖

𝑘) +𝑐1k( 𝑥𝑖+1) (𝜃𝑖+1
∗∗𝑘-

𝜃𝑖+1
𝑘 )     − 𝑐2∑ 𝑑𝑗[𝜃𝑖

∗∗𝑘−𝑗+1
− 𝜃𝑖

𝑘+1−𝑗
 ]𝑘

𝑗=1 + 𝑐2∑ 𝑑𝑗[𝜃𝑖
∗∗𝑘−𝑗

− 𝜃𝑖
𝑘−𝑗
 ]𝑘

𝑗=1 +  𝜏𝑘              (4.2) 

We put 𝐸𝑖
𝑘  = 𝜃𝑖

∗∗𝑘 - 𝜃𝑖
𝑘 , in equation (4.2), we get 

𝐸𝑛+1 = A 𝐸𝑛 + 𝜏𝑛                     (4.3) 

Clearly, 𝐸𝑛 satisfies (2.1)-(2.3), we have 

𝐸𝑖
𝑘+1 = 𝑐1k( 𝑥𝑖)𝐸𝑖−1

𝑘  + 𝑐2[1 – 𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝐸𝑖
𝑘+𝑐1k( 𝑥𝑖+1)𝐸𝑖+1

𝑘  – 𝑐2 ∑ 𝑑𝑗𝐸𝑖
𝑘+1−𝑗𝑘

𝑗=1  

                +∑ 𝑑𝑗𝐸𝑖
𝑘−𝑗𝑘

𝑗=1 +  𝜏𝑘                               (4.4) 
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where 𝐸𝑖
0 = 0, 𝐸0

𝑘  = 0, 𝐸𝑀+1
𝑘  = 0. 

𝐸𝑖
𝑘+1 = 𝑐1k( 𝑥𝑖)𝐸𝑖−1

𝑘  + 𝑐2[1 – 𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] 𝐸𝑖
𝑘+𝑐1k( 𝑥𝑖+1)𝐸𝑖+1

𝑘  – 𝑐2 ∑ 𝑑𝑗(𝐸𝑖
𝑘+1−𝑗𝑘

𝑗=1 - 𝐸𝑖
𝑘−𝑗

) 

                +  𝜏𝑘                                                  (4.5) 

Let 𝐸𝑘  = (𝐸1
𝑘 , 𝐸2

𝑘 , ….., 𝐸𝑀
𝑘 )T , ‖𝐸𝑘‖ = max

1≤𝑖≤𝑀
|𝐸𝑖
𝑘| and d = max

1≤𝑗≤𝑘
|𝑑𝑗| 

Therefore, from equation(4.4), we get 

‖𝐸𝑘+1‖ ≤ |𝑐1k( 𝑥𝑖) + 𝑐2[1 – 𝑟1 − 𝑟2(k(𝑥𝑖) +  k(𝑥𝑖+1))] +𝑐1k( 𝑥𝑖+1) – 𝑐2 ∑ 𝑑𝑘
𝑗=1 |‖𝐸𝑘‖  + max

1≤𝑘≤𝑁
𝜏𝑁            

                                                (4.6) 
Substituting c1 and c2 in equation (4.6), we get 

‖𝐸𝑘+1‖ ≤ 
1−𝑟1+𝑑

1+𝑟1
 ‖𝐸𝑘‖ + max

1≤𝑘≤𝑁
‖𝜏𝑁‖                          (4.7) 

‖𝐸0‖ = 0, implies ‖𝐸𝑘‖ = 0 

Hence, ‖𝐸𝑘+1‖ ≤  max
1≤𝑘≤𝑁

‖𝜏𝑁‖                (4.8) 

Since, lim
(∆𝑥,∆𝑡)→(0,0)

‖𝜏𝑁‖ = 0, implies that, ‖𝐸𝑘+1‖ → 0 uniformly in Ω as (∆𝑥, ∆𝑡) → (0,0). 

The proof is completed. 

5.  NUMERICAL SOLUTIONS 

We obtained the numerical solution of one dimensional bioheat equation by an time fractional explicit finite 

difference scheme developed in equations (2.1) - (2.3). This is a one dimensional model of skin structure 

with a thickness of 0.01208m. In our test problem the values of physical properties are chosen, which are 

given as follows: 

 = 1000 Kg/m3, c (= cb) = 4200J/kg/0C, wb = 0.5 Kg/m3, L = 0.01208m. which are the same as in [3], only 

the thermal conductivity depends on x: The temperature is set to 𝜃0 = 12oC to increase step of the skin 

surface. Our aim is to verify the stability of a new developed time fractional order explicit finite difference 

scheme. Here we consider the homogeneous tissue with the thermal conductivity of tissue being a function 

of x whose depth is measured in meter . For our test problem we perform the tests on three meshes 500, 750 

and 1000 respectively with the time increments being ∆t = 0:005s. 

 

Test Problem : 
We choose k(x) = 0.7(1 + 3x); which is a linear function of x and time ∆t = 0:005s. Figure 5.1 shows the 

temperature profiles along the x direction at 150s, 

Figure 5.2 represents the temperature elevations in the skin at x = 0:002416m: Using Mathematica software 

we obtain the simulations of heat transfer in skin by TFEFDS for three different mesh sizes.  

Blue Meshes : 10 × 50 = 500; Red Meshes : 10 ×75 = 750;  Green Meshes : 10 × 100 = 1000 

 

 

Temperature  
o
C ↑ 
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→distance x(m) 

Fig:5:1:Temperature profiles along x direction at t = 150s;[with k(x) = 0.7(1 + 3x); ∆t = 0.005s] 

                             Temperature oC ↑ 

 
→ Time t(s) 

Fig:5.2 :Temperature elevations in skin at x = 0.002416m;[with k(x) = 0.7(1 + 3x);Δt = 0.005s] 

 

CONCLUSION: 

 

(i) The numerical solutions of our test problem is independent of the mesh size. 

(ii) It follows that our time fractional order explicit finite difference scheme is stable numerically also. 

(iii) It is very difficult to handle the fractional order derivative problems and also obtain the numerical 

solution of the time fractional order explicit finite difference scheme. 

(iv) To obtain the numerical solution of time fractional bioheat transfer equation by the time fractional order 

explicit finite difference scheme, CPU requires more time because it involves large matrices 
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