

© 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-

5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 455

I

Harnessing the Cloud for Securely Outsourcing Large-Scale
Systems of Linear Equations
K.Satyanarayana Murthy MSc(Maths),B.Ed,PGDCA

 Asst.Professor

Depart of Humanities and Basic Sciences

PYDAH College of Engineering, Patavala, Kakinada

(Affiliated to JNTU-Kakinada, Andhrapradesh – 533001)

Abstract—Cloud computing economically enables customers with limited computational resources to outsource large-scale

computations to the cloud. However, how to protect customers’ confidential data involved in the computations then becomes a major

security concern. In this paper, we present a secure outsourcing mechanism for solving large-scale systems of linear equations (LE) in

cloud. Because applying traditional approaches like Gaussian elimination or LU decomposition (aka. direct method) to such large-scale

LEs would be prohibitively expensive, we build the secure LE outsourcing mechanism via a completely different approach—iterative

method, which is much easier to implement in practice and only demands relatively simpler matrix-vector operations. Specifically, our

mechanism enables a customer to securely harness the cloud for iteratively finding successive approximations to the LE solution, while

keeping both the sensitive input and output of the computation private. For robust cheating detection, we further explore the algebraic

property of matrix-vector operations and propose an efficient result verification mechanism, which allows the customer to verify all

answers received from previous iterative approximations in one batch with high probability. Thorough security analysis and prototype

experiments on Amazon EC2 demonstrate the validity and practicality of our proposed design.

Key Terms—Confidential data, computation outsourcing, system of linear equations, cloud computing

1 INTRODUCTION

N cloud computing, customers with computationally weak
devices are now no longer limited by the slow processing
speed, memory, and other hardware constraints, but can
enjoy the literally unlimited computing resources in the

cloud through the convenient yet flexible pay-per-use
manners [2]. Despite the tremendous benefits, the fact that

customers and cloud are not necessarily in the same trusted
domain brings many security concerns and challenges

toward this promising computation outsourcing model [3].
First, customer’s data that are processed and generated

during the computation in cloud are often sensitive in
nature, such as business financial records, proprietary

research data, and personally identifiable health informa-
tion, etc. While applying ordinary encryption techniques to
these sensitive information before outsourcing could be one

way to combat the security concern, it also makes the task of
computation over encrypted data in general a very difficult

problem [4]. Second, since the operational details inside
the cloud are not transparent enough to customers [3], no
guarantee is provided on the quality of the computed
results from the cloud. For example, for computations
demanding a large amount of resources, there are huge
financial incentives for the cloud server (CS) to be “lazy” if
the customer cannot tell the correctness of the answer.
Besides, possible software/hardware malfunctions and/or
outsider attacks might also affect the quality of the
computed results. Thus, we argue that the cloud is
intrinsically not secure from the viewpoint of customers.
Without providing a mechanism for secure computation
outsourcing, i.e., to protect the sensitive input and output
data and to validate the computation result integrity, it
would be hard to expect customers to turn over control of
their computing needs from local machines to cloud solely
based on its economic savings.

Focusing on the engineering and scientific computing
problems, this paper investigates secure outsourcing for
widely applicable large-scale systems of linear equations
(LE), which are among the most popular algorithmic and
computational tools in various engineering disciplines that
analyze and optimize real-world systems. For example, by
applying Newton’s method, to solve a system modeled by
nonlinear equations converts to solve a sequence of
systems of linear equations. Also, by interior point
methods, system optimization problems can be converted
to a system of nonlinear equations, which is then solved as
a sequence of systems of linear equations as mentioned
above. By “large,” we mean the storage requirements of
the system coefficient matrix may easily exceed the
available memory of the customer’s computing device [5],
like a modern portable laptop. In practice, there are many
real-world problems that would lead to very large-scale
and even systems of linear equations with up to hundreds
of thousands [6], [7] or a few million unknowns [8].

 For example,

A typical double-precision 50;000 × 50;000 system matrix

resulted from electromagnetic application would easily
occupy up to 20 GBytes storage space, seriously
challenging the computational power of these low-end
computing devices. Because the execution time of a
computer program depends not only on the number of
operations it must execute, but on the location of the data
in the memory hierarchy [5], solving such large-scale
problems on custo- mer’s weak computing devices can be
practically impos- sible, due to the inevitably involved
huge IO cost. Thus, resorting to cloud for such
computation intensive tasks can be arguably the only
choice for customers with weak computing .

It is worth noting that in the literature, several crypto-
graphic protocols for solving various core problems in linear

algebra, including the systems of linear equations [9], [10],
[11], [12], [13], [14] have already been proposed from the

http://www.ijrar.org/

© 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 456

Oð Þ

¼ ð Þ
¼

Oð Þð ≤ Þ

secure multiparty computation (SMC) community. How-
ever, these approaches are in general ill suited in the context
of computation outsourcing model with large problem size.
First, all these work developed under SMC model do not
address the asymmetry among the computational power
possessed by cloud and the customer, i.e., they all impose
each involved party comparable computation burdens,
which in this paper our design specifically intends to avoid
(otherwise, there is no point for the customer to seek help
from cloud). Second, the framework of SMC usually does not
directly consider the computation result verification as an
indispensable security requirement, due to the assumption
that each involved party is semihonest. This assumption is
not true any more in our model, where any unfaithful
behavior by the cloud during the computation should be
strictly forbidden. Last but not the least, almost all these
solutions are focusing on the traditional direct method for
jointly solving the LE, like the joint Gaussian elimination
method in [10], or the secure matrix inversion method in [11].
While working well for small size problems, these ap-
proaches in general do not derive practically acceptable
solution time for large-scale LE, due to the expensive cubic-
time computational burden for matrix-matrix operations and
the huge IO cost on customer’s weak devices (see discussions
in Appendix D, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2012.206).

The analysis from existing approaches and the computa-
tional practicality motivates us to design secure mechanism
of outsourcing LE via a completely different approach—
iterative method, where the solution is extracted via finding
successive approximations to the solution until the required
accuracy is obtained. Compared to direct method, iterative
method only demands relatively simpler matrix-vector

operations with n
2 computational cost, which is much

easier to implement in practice and widely adopted for large-
scale LE [6], [8], [15]. To the best of our knowledge, no
existing work has ever successfully tackled secure protocols
for iterative methods on solving large-scale systems of LE in
the computation outsourcing model, and we give the first
study in this paper. Specifically, our mechanism utilizes the
additive homomorphic encryption scheme, e.g., the Paillier
cryptosystem [16], and allows customers with weak comput-
ing devices, starting from an initial guess, to securely harness
the cloud for finding successive approximations to the

solution in a privacy-preserving and cheating-resilient
manner. For a linear system with n n coefficient matrix,
the proposed mechanism is based on a one-time

amortizable setup with n
2 cost. Then, in each iterative

algorithm execution, the proposed mechanism only incurs
n local computational burden to the customer and
asymptotically eliminates the expensive IO cost, i.e., no
unrealistic memory demands. To ensure computation
result integrity, we also propose a very efficient cheating
detection mechanism to effectively verify in one batch of
all the computation results by the cloud server from
previous algorithm iterations with high probability. Both
designs ensure computational savings for the customer.
Our contributions are summarized below: For the first
time, we formulate the problem of securely outsourcing
large-scale systems of LE via iterative methods, and
provide mechanism designs fulfilling input/output

privacy, cheating resilience, and efficiency.

1. Our mechanism brings computational savings.
Within each iteration, it incurs OðnÞ computation
burden for the customer and demands no unrealistic
IO cost, while solving large-scale LE locally incurs

Oðn
2
Þ per-iteration cost in terms of both time and

memory requirements [8].

2. We explore the algebraic property of matrix-vector
operations to design a batch verification mechanism,
which allows customers to verify all results of
previous iterations from cloud in one batch. It
ensures both the efficiency advantage and robust-
ness of the design.

3. The experiment on Amazon EC2 [17] shows our

mechanism helps customers achieve up to 2:22 ×

savings when the sizes of the LE are relatively small

(n ≤ 50;000). Better efficiency gain can be easily

anticipated when n goes to larger size. In particular,

when n ¼ 500;000, the anticipated savings can be

up to 26:09×.

The rest of the paper is organized as follows: Section 2
introduces the system and threat model, and our design
goals. Then, we provide the detailed mechanism descrip-
tion and security analysis in Sections 3, 4, and 5. Section 6
gives the performance evaluation, followed by Section 7
which overviews the related work. Finally, Section 8 gives
the concluding remark.

2 PROBLEM STATEMENT

 System and Threat Model

We consider a computation outsourcing architecture
involving cloud customer and cloud server illustrated in

Fig. 1. The customer has a large-scale LE problem Ax b,

denoted as Ø A; b , to be solved. However, due to the
lack of computing resources, he cannot carry out such

expensive (np 2 < p 3) computation locally. Thus,
the customer resorts to cloud server for solving the LE
problem. For data protection, the customer first uses a

secret key K to map Ø into some encrypted version ØK.

Then, based on ØK, the customer starts the computation

outsourcing protocol with CS, and harnesses the cloud
resources in a privacy-preserving manner. The CS is
expected to help the customer finding the answer of

ØK,

http://www.ijrar.org/
http://doi.ieeecomputersociety.org/

 © 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-

5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 457

×

T

× ×

¼ þ

¼ — · ¼ ·

¼ — · · þ ·

¼ ð þ Þ ¼

Fig. 1. Architecture of secure outsourcing large-scale systems of linear
equations in cloud computing.

but supposed to learn as little as possible on the sensitive

information in Ø. After receiving the solution of encrypted

problem ØK, the customer should be able to first verify the

answer. If it’s correct, he then uses the secret K to map the

output into the desired answer for the original problem Ø.

As later we shall see in the proposed model, the customer
still needs to perform a one-time setup phase of encrypting

the coefficient matrix with relatively costly Oðn
2
Þ

computation.1 But it is important to stress that this process
can be performed under a trusted environment where the

weak customer with no sufficient computational power
outsources it to a trusted party. (Similar treatments have

been utilized in [18]). The motivating example can be a
military application where the customer has this one-time
encryption process executed inside the military base by a
trusted server, and then goes off into the field with access
only to untrusted CS. Another example can be the customer

has the system modeling coefficient matrix A encrypted on

his company’s workstation, and then uses his portable
device outside while still hoping to make timely decisions

(derive solutions xi) based on different observation bi in the

field, for i ¼ 1; 2; ... ; s. Thus, to make the rest of the paper

easier to catch, we assume that CS is already in possession
of the encrypted coefficient matrix, and the customer who
knows the decryption key hopes to securely harness the
cloud for on-demand computing outsourcing needs, i.e.,

solving LE problems fAx ¼ big.

The security threats primarily come from the malicious
behaviors of CS, which may behave beyond “honest-but-
curious” model as assumed by other works on cloud
security (e.g., [19], [20], [21]). In addition to being interested

in learning the sensitive input/output information of Ø, CS

can behave unfaithfully or intentionally sabotage the
computation, e.g., to lie about the result to save the
computing resources, while hoping not to be caught.

 Design Goals

To enable secure and practical outsourcing of LE under the
aforementioned model, we have the following design goals:
1) Input/output privacy: No sensitive information from the
customer’s private data can be derived by the cloud server
during faithfully performing the LE computation; 2) Robust
cheating detection: Output from faithful cloud server must
be verified successfully by the customer. No output from
cheating cloud server can pass the verification with
nonnegligible probability. 3) Efficiency: The local
computation burden, in terms of both time and memory

1. The encryption on each element of the matrix coefficient is

independent, and thus can be easily parallelized. Doing each of these one-
time element encryptions does not have to load the whole coefficient matrix
in memory in the first place. As an example of parallelization, enabling
double threading on a six core system could easily speedup the operation

efficiency with a factor of 12. requirements, for the customer
should be much less than solving the original LE on
his own.

 Preliminaries and Notations

 Iterative Method

In many engineering computing and industrial applications,
iterative method has been widely used in practice for solving
large-scale LE [6], and sometimes is the mandatory choice
[15] over direct method due to its ease of implementation
and relatively less computational power consumption,
including the memory and storage IO requirement [8]. We
now review some basics on the general form of stationary
iterative methods for solving LE problems. A system of
linear equations is written as

Ax ¼ b; ð1Þ

where x is the n 1 vector of unknowns, A is an n n

(nonsingular) coefficient matrix, and b is an n 1 right-hand
side vector (so called constant terms). Most iterative methods
involve passing from one iteration to the next by modifying a
few components of some approximate vector solution at a
time until the required accuracy is obtained. Without loss of
generality, we focus on Jacobi iteration [15] here and
throughout the paper presentation for its simplicity. Though
extensions to other stationary iterative methods can be
possible, we don’t study them in the current work. We begin

with the decomposition: A D R, where D is the

diagonal component, and R is the remaining matrix. Then,

the (1) can be written as Ax D R x b, and finally

reorganized as: x D—1 R x D—1 b. According to the
Jacobi method, we can use an iterative technique to solve the

left hand side of this expression for xðkþ1Þ, using previous

value for xðkÞ on the right hand side. If we denote iteration

matrix T D—1 R and c D—1 b, the above iterative
equations can be represented as

xðkþ1Þ ¼ T · xðkÞ þ c: ð2Þ

The convergence is not always guaranteed for all matrices,
but it is the case for a large body of LE problems derived
from many real-world applications [15].

 Homomorphic Encryption

Our construction utilizes a semantically secure encryption
scheme with additive homomorphic property. Given two

integers x1 and x2, we have Encðx1
x
þ x2Þ ¼ Encðx1Þ m

Encðx2Þ, and also Encðx1 m x2Þ ¼ Encðx1Þ 2 . In our imple-
mentation we adopt the Paillier cryptosystem [16]. For a

vector x ¼ ðx1; x2; . . . ; xnÞ
T

2 ðZZN Þ
n, we use EncðxÞ to

denote the coordinate-wise encryption of x: EncðxÞ¼

ðEncðx1Þ; Encðx2Þ; . . . ; EncðxnÞÞ . For some n × n matrix

T, where each of the component T½i; j] in T is from ZZN ,

we denote the component-wise encryption of T as EncðTÞ,

http://www.ijrar.org/

© 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 458

¼

·

ð Þ

Oð Þ

¼

2

¼ þ ¼ þ

¼ ð Þ

and we have EncðTÞ½i; j] ¼ EncðT½i; j]Þ.

3 THE BASIC SOLUTION

In this section, The basic solution is described under the
general framework consisting of three phases:
(ProbTransform, ProbSolve, ResultVerify). The analysis of
this basic solution gives insights and motivations on our
main mechanism design based on iterative methods.

Specifically, in the ProbTransform phase, the customer

picks a random vector r 2 IRn as his secret keying material.

Then, he rewrites (1) as Aðx þ rÞ ¼ b þ Ar. Let y ¼ x þ

r and b0 ¼ b þ Ar, we have Ay ¼ b0. To hide the

coefficient matrix A, the customer selects a random

invertible matrix Q with the same size as A. Left

multiplying Q to both sides of Ay ¼ b0 give us

A0y ¼ b00; ð3Þ

where A0 ¼ QA and b00 ¼ Qðb þ ArÞ. Clearly, as Q and

r are chosen randomly and kept as secret, cloud has no

way to know A; b; x , except the dimension of x.
The customer can then start the ProbSolve phase by

outsourcing ØK ¼ ðA0; b00 Þ to the cloud, who solves ØK

and sends back answer y. After verifying the correctness of

y, the customer can derive the original x via x ¼ y — r.

Remark. While achieving the input/output protection, this
approach is not attractive for the following reasons:
1) The local problem transformation cost for matrix

multiplication QA is Oðn
3
Þ, which is comparable to the

cost of solving Ax b [22]. Considering the extra cost of

ResultVerify, the discussion of which we intentionally
defer to a later Section 5, there is no guaranteed
computational saving for the customer. 2) The local cubic
time cost can become prohibitively expensive when n
goes large to the orders of hundreds of thousand.
Besides, it violates our assumption in Section 2 that the

customer cannot carry out expensive OðnpÞð2 <p ≤ 3Þ

computation locally.
In the recent literature [23], [24], Atallah et al. have

proposed works for secure outsourcing matrix multi-

plication using only n
2 local complexity. However, in

practice those works can hardly be applied to our case of

calculating Q A for (3). The reason is that in their

works, either noncollusion servers are required [23], or
scalar operations are expanded to polynomials and thus
incur huge communication and computation overhead
[24]. Both assumptions are difficult to be met in practice.
(See detailed discussion at Section 7).

such as the statistical calculations [25], the radar
cross-section calculations [6], etc.

2. Although proper preconditioning techniques (e.g.,

[5], [6], [7], [8], [15]) on the coefficient matrix A can

significantly improve the performance of iterative
method, we do not study the cost of these techniques
in this paper. As we focus on the security design, we

assume the coefficient matrix A already ensures fast

enough convergence behavior, i.e., the number of
iterations L n.

3. We assume the matrix A is first transformed to

T ¼ D—1 · R, where A ¼ D þ R as in (2), and then

stored in cloud in its encrypted form EncðTÞ via an

additive homomorphic encryption. As stated in our
system model, this one-time setup phase is done
before ProbTransform phase by some trusted work-
station under different application scenarios. Here-
inafter, we may interchangeably use the two forms

of coefficient matrix A or T without further notice.

4. For ease of presentation, we defer the cheating
detection to Section 5.

 Problem Transformation

For protection of result x, the customer who has coefficient

vector b and seeks solution x satisfying Ax b cannot
directly start the ProbSolve with cloud. Thus, we need a
transformation technique to allow the customer to properly
hide such information first. Similar to the basic mechanism,
in the ProbTransform phase, the customer picks a random

vector r IRn as his secret keying material, and rewrites (1)
as the new LE problem

Ay ¼ b0; ð4Þ

where y x r and b0 b Ar. Clearly, the solution x to
(1) can be found by solving a transformed LE problem in (4),

and vice versa. At this point, both the output x and input

tuple b have been well hidden by random vector r. Next,
we reformulate (4) into the iterative form similar as (2):

yðkþ1Þ ¼ T · yðkÞ þ c0; ð5Þ

4 THE PROPOSED SOLUTION
where T ¼ —D—1 · R, c0 ¼ D—1 · b0, and A ¼ D þ R. Now

the problem input Ø ¼ ðA; bÞ is changed to tuple

http://www.ijrar.org/

 © 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-

5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 459

¼ þ
×

ð Þ

The above observation and discussion shows that direct
method-based approach might not be a good option for
resource-limited customers for secure outsourcing large-

scale LE with computational savings in mind. This
motivates us to design secure outsourcing mechanism
using iterative method. To better facilitate the mechanism
design to be explored next, we first make some general but
nonstringent assumptions about the system as follows:

1. We assume the coefficient matrix A is a general

nonsingular matrix that ensures a solution to the
system after convergence of iterative approxima-

tions.2 For simplicity, one such example for A is to be

a strictly diagonally dominant matrix. Note that this
is not a stringent requirement, as many real-world
formulated LE problems satisfy this assumption,

2. According to the general result in [15], the necessary and sufficient

condition for convergence is that the maximum modulus of eigenvalues of

iteration matrix T ¼ —D—1 · R is less than 1.

ØK T; c0 , where T has already been encrypted and

stored as Enc T at cloud, and c0 is just a randomly

masked version of b via random n 1 vector r. The output

x is also masked by y x r. This whole procedure is
summarized as Algorithm 1 in Appendix B, available in
the online supplemental material.

Remark. This problem transformation only requires locally

two matrix-vector multiplications: b0 ¼ b þ Ar

and c0 ¼ D—1 · b0 with n
2 þ n scalar multiplications.

When n goes large, expensive IO cost at customer device
might downgrade the performance of such operations.
By comparing (2) and (5), it is easy to see that this

transformation does not affect the matrix of A (or T),

which gives us advantage of reusing. Specifically, the

customers with different constant terms bi can run this

transformation multiple times by choosing a different r

each time and then harness the cloud for solving different

LE problems fAx ¼ big, as seen in Appendix A.2,

available in the online supplemental material.The
Iterative Problem Solving

After the problem transformation step, now we are ready for
the ProbSolve phase. Our goal is to let the customer securely
harness the cloud for the most expensive computa- tion, i.e.,

the matrix-vector multiplication T · yðkÞ in (5) for each

algorithm iteration, k ¼ 1; 2; . . . ; L. Since it is an iterative

computing process, we only describe the very first round of
the process as follows. We leave the analysis of convergence
and input/output protection in later sections. In what
follows, we assume our main protocol of solving LE works
over integers. All arithmetic is modular with respect to the
modulus N of the homomorphic encryption, and the
modulus is large enough to contain the answer. Details on
how to handle noninteger numbers is given in Appendix A,
available in the online supplemental material.

1. For the very first iteration, the customer starts the
initial guess on the vector yð0Þ ¼ ðyð0Þ; yð0Þ; . . . ; yð0Þ Þ

T ,

http://www.ijrar.org/

© 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 460

X

j

Since we assume the matrix A ensures convergence, to
determine the termination, the customer tests if

kyðkÞ — yðkþ1Þk ≤ s; ð7Þ

for some small enough s> 0. And the termination point

yðkþ1Þwill help get the final result x via x ¼ yðkþ1Þ — r. The

local computation cost for each iteration is still OðnÞ.
 Input/Output Privacy Analysis

 Output Privacy Analysis

From above protocol instantiation, we can see that
throughout the whole process, the cloud server only sees

the plaintext of yðkÞ, the encrypted version of matrix EncðTÞ,

and encrypted vectors EncðT · yðkÞÞ, k ¼ 1; 2; . . . ; L. Since

y is a blinded version of original solution x, it is safe to

send y to the cloud in plaintext. No information of x would

be leaked as long as r is kept secret by the customer. Note

that

1 2
and then sends it to the cloud.

n

this analysis can be easily extended to the case of

2. The cloud server, in possession of the encrypted

matrix EncðTÞ, computes the value EncðT · yð0Þ Þ

by using the homomorphic property of the
encryption:

outsourcing a series of equations fAx ¼ big, since for each
individual Ax ¼ bi, an independently picked random ri

can be used to protect the output privacy accordingly.

n

EncðT · yð0Þ Þ½i] ¼ Enc
j¼1

Yn

T½i; j] · yð0Þ

!

yð0Þ

ð6

Þ

 Input Privacy Analysis

While the output is protected well, it is worth noting that
some knowledge about the input tuple Øk ¼ ðT; c0Þ could be
implicitly leaked through the protocol execution itself. The

¼
j¼1

EncðT½i; j]Þ j

;

ð0Þ

reason is as follows: for each two consecutive iterations of

the protocol, namely, the kth and the ðk þ 1Þth, the cloud

for i ¼ 1; .. . ; n, and sends EncðT · y Þ to customer.

3. After receiving EncðT · yð0Þ Þ, the customer decrypts

and gets T · yð0Þ using his private key. He then

updates the next approximation yð1Þ ¼ T · yð0Þ þ c0

via (5).

For the kth iteration, it follows that the customer sends

the kth approximation yðkÞ to cloud. The cloud sends

EncðT · yðkÞ Þ to the customer for the next update of yðkþ1Þ.

The protocol continues until the result converges, as shown
in Algorithm 2 in Appendix B, available in the online
supplemental material.

Remark. In each iteration, the dominant customer’s compu-
ðkÞ

server sees actually the plaintext of both yðkÞ and yðkþ1Þ .
Thus, a “clever” cloud server could initiate a system of
linear equations via (5) and attempts to learn the unknown

components of T and c0. More specifically, for the total L

iterations, the cloud server could establish a series of ðL —

1Þ × n equations from yðkÞ, k ¼ 0; 1; . . . ; L — 1,3 while

hoping to solve n2 þ n unknowns of T and c0.

However, as we have assumed in Section 4 that various
preconditioning techniques can ensure fast enough conver-
gence behavior, we have the number of iterations L n. (In
fact, if L is close or even larger than n, there would be no
advantage of using iterative method over direct method at
all.) As a result, from the ðL — 1Þ× n equations, the n2 þ n

http://www.ijrar.org/

 © 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-

5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 461

·

ð · Þ

k¼

1 intermediate results,
f ẑ

¼ T ·
ŷ

g, k ¼ 1; 2; ... ; L, re-

tation overhead is to decrypt the vector of EncðT · y Þ,
which takes OðnÞ complexity, and in general does not
require expensive IO cost. This is theoretically less than the

Oðn
2
Þ cost demanded by the matrix-vector multiplication

T · yðkÞ of (5) in terms of time and memory requirements.

Note that the theoretical computation efficiency gain can
only be exhibited when the problem size n goes large, since
the decryption computation is generally more expensive
than the plaintext arithmetic operation. But large-scale LE
is exactly the case we are focusing on by using iterative
methods. Later in Section 6, we show performance results
and discuss the possible selections of the size n for the
problems. Also note that the communication overhead
between the customer and the cloud is only two vectors of
size n for each iteration, which is reasonably small.

4.3 Convergence Analysis

When dealing with iterative methods, it is a must to
determine whether and when the iteration will converge.

components of T and c0 is largely underdetermined and

cannot be exactly determined by any means. Thus, as long
as the cloud server has no previous knowledge of the

coefficient matrix A, we state that such bounded informa-

tion leakage from ðL — 1Þ× n equations can be negligible,

especially when the size of problem n goes very large.

In fact, we can further enhance the guarantee of input

privacy by introducing a random scaling factor ak 2 ZZN

for each iteration to break the linkability of two
consecutive iterations of the protocol. Here, the choice of
ak should not introduce overflows with respect to the
large arithmetic modulo N . Specifically, instead of

sending yðkÞ to the cloud server, the customer sends ak ·

yðkÞ for the kth iteration of the ProbSolve. When the cloud

server sends back the encrypted value Enc ak TyðkÞ , the

customer just simply decrypts the vector of ak Tyðkþ1Þ,

divides each component with ak, and then updates the

next approximation yðkþ1Þ via (5). Similarly,

3. Note that yðLÞ as the final answer is not transmitted to the cloud server.

for the next iteration another random scaling factor akþ1 is

multiplied to yðkþ1Þ before sent to the cloud server.

Remark. With the random scaling factor ak, the original

value of yðkÞ is well protected via akyðkÞ. Thus, the cloud

server can no longer directly establish linear equations

from received akyðkÞ and akþ1y
ðkþ1Þ, but a series of

nonlinear equations with extra random unknowns

a1; a2; . . . ; aL. While this method further enhances the

guarantee of input privacy by bringing extra randomness

and nonlinearity of the system equations, it does not
incurs any expensive operation, Finally, we should note
that the above analysis on the input privacy does not

affect the output protection of x. This is because the

random secret r protects x from y and the original

constant term b from transformed c0.

5 CHEATING DETECTION

Till now, the proposed protocol works only under the
assumption of honest but curious cloud server. However, in
many cases, an unfaithful cloud server could sabotage the
protocol execution by either being lazy or intentionally
corrupting the computation result. Next, we propose to
design result verification methods to handle these two
malicious behaviors. Our goal is to verify the correctness of
the solution by using as few as possible expensive matrix-
vector multiplication operations. In the following, we denote

zðkÞ ¼ T · yðkÞ as the expected correct responses, and ẑðkÞ ¼

T · ŷ ðkÞ as the actual received value from cloud server, where

matrix-vector multiplication of (8) only needs to be executed
at most once throughout the protocol execution.

5.2 Dealing with Truly Malicious Adversary

While a lazy adversary only sends previous result as the
current one, a truly malicious adversary can sabotage the
whole protocol execution by returning arbitrary answers.
For example, the malicious cloud server could compute (6)

via arbitrary vectors ŷ ðkÞ other than customer’s yðkÞ. In

the worst case, it would make the protocol never converge,
wasting the resources of the customer. Thus, we must design
an efficient and effective method to detect such malicious
behavior, so as to ensure the result quality. The straightfor-
ward way would be to redo the matrix-vector multiplication

T · yðkÞ and check if it equals to the received ẑðkÞ for

each iteration k. This is not appealing since it consumes
equivalent amount of resources in comparison to that of
computing the results directly. Below we utilize the
algebraic property of matrix-vector multiplication and
design a method to test the correctness of all received

answers ẑðkÞ ¼ T · ŷ ðkÞ, k ¼ 1; 2; . . . ; L in only one

batch, i.e., using only one matrix- vector multiplication.
Note that batch verification is not a new idea and has been
studied in cryptographic contexts, e.g., fast digital
signature verifications [26].

Suppose after L iterations, the solution still does not
converge. The customer can initiate a ResultVerify phase by

randomly selecting L numbers, α1; α2; . . . ; αL from B c ZZN ,

where each αk is of l-bit length and l< log N. He then

computes the linear combination & over the yðkÞ’s, which he
has provided in the previous k iterations, k ¼ 1; 2; . . . ; L:

k ¼ 1; 2; ... ; L. We also assume L≤ L, meaning the Result-

& ¼
PL

αk · yðkÞ. Next, to test the correctness of all the

5.1 Dealing with Lazy Adversary

We first consider detecting the laziness of cloud server.
Since computing the addition and multiplication over

ceived from cloud server, the customer simply checks if
the following equation holds:

XL

Verify phase is initiated within at most L iterations.
ðkÞ ðkÞ

http://www.ijrar.org/

© 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 462

—l

encrypted domain could cost a lot of computational power,
the cloud server might not be willing to commit service-
level-agreed computing resources in order to save cost.

T · & ¼
?
 αk

k¼1

· ẑðkÞ: ð9Þ

More severely, for the kth iteration, the adversary could

simply reply the result zðk—1Þ of the previous ðk — 1Þth

The above equation can be elaborated as follows:

XL

iteration without computation.

As a result, the customer who uses zðk—1Þ to update for

the next yðkþ1Þ will get the result yðkþ1Þ ¼ yðkÞ. Consequently,

T · & ¼ T ·

XL

k¼

1

αk · y
ðkÞ

XL

he may be incorrectly led to believe the solution of equation

Ay ¼ b0 is found. Thus, for the malicious adversary, only
¼

k¼

1

αk · T · yðkÞ ¼
k¼

1

αk · ̂ zðkÞ:

checking the (7) is not sufficient to convince the customer
that the solution has converged. According to (4) one
further step has to be executed as

kAyðkþ1Þ — b0k ≤ s: ð8Þ

Remark. This checking equation incurs the local cost of Oðn
2
Þ

for customer. While potentially expensive for large size of
n, we should note that it does not have to be executed
within every iteration. It only needs to be tested after the

test on yðkÞ and yðkþ1Þ via (7) is passed. If (7) is not passed, it

means yðkþ1Þ is not the convergence point yet. On the other

hand, if (7) is successfully passed, we can then initiate the
test of (8). If (8) holds, we say the final solution is found,

which is x ¼ yðkþ1Þ — r. If it doesn’t, we can tell that the

cloud server is cheating (being lazy). In either case, this

Since each αk is chosen randomly from B ¼ f0; 1g
l
c ZZN ,

we have the following theorem capturing the
correctness and soundness of the cheating detection
method:

Theorem 1. The result verification (9) holds if and only if ẑðkÞ

¼ T · yðkÞ for all k ¼ 1; 2; . . . ; L, with error probability at

most 2 .

Proof. See Appendix C, available in the online supple-
mental material.
 u
t

Remark. It is easy to tell that the computation overhead of
(9) is only bounded by one matrix-vector
multiplication of the left-hand-side of the equation
(recall L≤ L n). The size of l is a tradeoff between
efficiency and security.

http://www.ijrar.org/

 © 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-

5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 463

¼

¼

TABLE 1
Transformation Cost for Different Problems

reasonable choice of 20 bits of l is also acceptable [27].
Note that in practice this result verification does not need
to happen very frequently, because the property of batch
verification ensures the quality of all previous received

values f ẑðkÞ ¼ T · ŷ ðkÞg, k ¼ 1; 2; . . . ; L. Thus, the

custo- mer can preset the threshold L as sufficiently
large such that either he detects the unfaithful behavior
of cloud server or the program will converge soon after
L iterations. In the best case, (9) only needs to be
instantiated once. Combined with (8), we can see that
our method for cheating detection indeed achieves as
few as possible expensive matrix-vector multiplication
operation. As a result, the overall design asymptotically
eliminates the expensive IO cost on customer throughout
the successive approximation process for seeking the
solution as well as result verification.

generate a random matrix with coefficient ranges from —1

to 1 and then add it with a diagonal matrix with large

diagonals, e.g., 100 in case of n 20;000 . The scaling factor

for real numbers is set to be 103 (See Appendix A, available

in the online supplemental material). The solutions are all
converged within 50 iterations when termination threshold

s ¼ 0:001. Since the computation dominates the running

time as evidenced by our experiment, we ignore the
communication cost. All results represent the mean of 10
trials. In order to handle large-scale matrix-vector opera-
tions, proper matrix splitting approaches are used, which
demonstrates how the IO cost could significantly down-
grade the performance if the whole computation is solely
performed on the customer’s local machine.

 Problem Transformation Cost

We first summarize the cost for customer performing
ProbTransform. As shown in Section 4.1, the transformation
cost is dominated by the two matrix-vector multiplication in
(5). Note that when n goes large, the resulted matrix would be
too large to be hold in customer’s local machine memory.
Thus, the matrix-vector multiplication cannot be performed
in one step. Instead, the matrix has to be split into multiple
submatrices, and each time only a submatrix can be loaded in
the memory for computing a portion of the final result. In our
experiment with 1 GB RAM laptop, we split the matrix into
submatrices with 200 MB each. This has taken into account the
memory occupation from OS load-up and easy in-memory
operations and suits the assumption of weak customer
device. The time results for different problem sizes are shown

6 PERFORMANCE ANALYSIS
in Table 1. For the largest benchmark size n 50;000,
the problem transformation only costs around 22 minutes on
our

We implement our mechanisms using C language. Algo-
rithms utilize the GNU Scientific Library, the GNU Multiple
Precision Arithmetic Library, and the Paillier Library with
modulus N of size 1,024 bit. The customer side process is
conducted on a laptop with Intel Core 2 Duo processor
running at 2.16 GHz, 1 GB RAM, and a 5,400 RPM Western
Digital 250 GB Serial ATA drive with an 8 MB buffer. The
cloud side process is conducted on Amazon Elastic
Computing Cloud (EC2) with High-Memory instance type
[17]. Our randomly generated diagonally dominant test
benchmark focuses on the large-scale problems only, where
n ranges from 5,000 to 50,000, and serve for the purpose of
validating the performance of the design. To ensure good
condition number and the convergence of solutions, we first

laptop. Compared to the baseline experiment where the
customer solves the equation by himself (shown in the next
section), such computational burden should be considered
practically acceptable. And it can be easily amortized
throughout the overall iterative algorithm executions for
getting one problem solution, when we compare the
customer’s local average computation cost per iteration.

 Local Computation Comparison
In our protocol by harnessing the computation power of
cloud, the dominant operation in each iteration for customer
is only to perform n decryptions. If the customer solves the
problem by himself, which is the baseline of our comparison,
the dominant computation burden within each iteration
would be the matrix-vector multiplication with the input siz

http://www.ijrar.org/

© 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 464

×

×
×

TABLE 2

The Average per-Iteration Cost for
Customer Computation
Comparison

The entry with “×” indicates the positive efficiency gain is achieved.

Fig. 2. Comparison of customer’s average Per-Iteration computation
cost among baseline and our scheme with different choices of key
length.

n
2. We compare the two computation cost in Table 2, where

both timing results and estimated memory consumption for
each single algorithm iteration are reported. Note that the
reported measurements are the average per-iteration cost,
which have taken into account the problem transformation in
amortized fashion already. To better present the trend of the
efficiency gain between the two experiments, the timing
comparison results are also plotted in Fig. 2.

To have a fair comparison, again we have to consider the
memory requirements incurred by the two operations. In
particular, when n goes large, the IO time has to be taken into
consideration. Similar to the transformation cost test, in our
baseline experiment, each matrix is split into submatrices
with 200 MB each for easy in-memory arithmetic operation. In
this way, when performing the matrix-vector multiplication

for a 50;000 50;000 matrix with 20 GB space, at least

100 times expensive IO operations for a 200 MB submatrix
have to be performed, which significantly increases the total
time cost in our baseline experiment, as shown in Fig. 2. On
the other hand, our proposed scheme only demands local n
decryption operations, which does not have such demands.
For 1,024 bit key, each ciphertext is of size 2,048 bit, i.e., 256

byte (see Section 2.3.2). Therefore, holding the 50;000 1

encrypted vector only needs 50;000 256 Bytes < 13:0 MB

memory, which can be easily satisfied by modern portable
computing devices. Thus, the total local computation cost
simply goes linearly with the problem size n. To show
possible tradeoffs between security and performance, we also
conduct the experiment with reduced key length of the

Paillier cryptosystem. This is motivated by applications

http://www.ijrar.org/

 © 2018 IJRAR September 2018, Volume 5, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-

5138)

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 465

¼
×

¼

×
¼

¼
¼

Oð Þ
Oð Þ

¼
¼

Oð Þ Oð Þ

where only short term guarantees of secrecy (the

coefficient matrix of A) may be required. (See short key

experiments in [28], [29], for example.) Thus, if the customer
accepts a smaller key length, the total timing will be
reduced.

We can see that the crossover point occurs around n

48;000 for a 1,024 bit key and n 22;000 for a 768 bit key

in Fig. 2, where the trend of the efficiency gain among

 n and n
2 is also clearly shown. In case of

768 bit key, when n 50;000, the customer’s local
computation cost in the baseline experiment would be

2:22 more than the proposed scheme. Note that n

 50;000 is not an unreason- ably large matrix. Many
real-world application, e.g., problems from
electromagnetic community, could easily lead to a dense
system of linear equations with more than 200,000
unknowns [8]. Though in this work we didn’t try problem
size larger than 50,000, the better efficiency gain for larger
scale problems can be easily anticipated from the clear

trend among n and n2 shown in Fig. 2. For

example, when n 500;000, the anticipated

computational saving for customer can be up to 26. 09

 . Note that the choice of in-memory storage does not
affect the theoretical analysis on the computation gain.
Also, from the experi- mental observation, as long as n

goes large, i.e., for large- scale LE problems, the
computational savings can always be expected by the
customer.

 Cloud Computation Cost

The cloud side computation cost for each iterated algorithm
execution is given in Table 3. The third and forth columns
lists the cloud computation time when there is only one
instance running. However, as stated in Appendix A.3,
available in the online supplemental material, we can utilize
the cost associativity of cloud computing to speedup the
cloud server computation via task parallelization without
introducing additional cost to customers. Thus, the fifth and
the sixth columns lists the estimated cloud computation time
when multiple t Amazon EC2 instances are running
simultaneously. By configuring a proper choice of t

100,
even for the largest size of the problem n 50;000, the cloud
side computation can be finished within around 20 minutes
for each round. Given the security property our mechanism
has provided, such time cost can be deemed reasonable.

7 RELATED WORK

Recently, a general result of secure computation outsour-
cing has been shown viable in theory [18], which is based on

TABLE 3

Cloud Side Computation Cost for Different Choices of Keys and Number of Simultaneously Running EC2 Instances t

http://www.ijrar.org/

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 466

Yao’s garbled circuits [30] and Gentry’s fully homomorphic
encryption (FHE) scheme [31]. However, applying this
general mechanism to our daily computations would be far
from practical, due to the extremely high complexity of FHE
operation and the pessimistic circuit sizes that can hardly be
handled in practice. Instead of outsourcing general func-
tions, in the security community, Atallah et al. explore a list
of customized solutions [23], [24], [32] for securely out-
sourcing specific computations. In [32], they give the first
investigation of secure outsourcing of numerical and
scientific computation, including LE. Though a set of
problem dependent disguising techniques are proposed,
they explicitly allow private information leakage. Besides,
the important case of result verification is not considered. In
[23], Atallah and Bejanmin give a protocol design for secure
matrix multiplication outsourcing. The design is built upon
the assumption of two noncolluding servers and thus
vulnerable to colluding attacks. Later on in [24], Atallah and
Frikken give an improved protocol for secure outsourcing
matrix multiplications based on secret sharing, which
outperforms their previous work [23] in terms of single
server assumption and computation efficiency. But the
drawback is that due to secret sharing technique, all scalar
operations in original matrix multiplication are expanded to
polynomials, introducing significant communication over-
head. Considering the case of the result verification, the
communication overhead must be further doubled, due to
the introducing of additional precomputed “random noise”
matrices. In short, these solutions, although elegant, are still
not efficient enough for immediate practical uses on large-
scale problems, which we aim to address for the secure LE
outsourcing in this paper. Wang et al. [33] give the first
study of secure outsourcing of linear programming in cloud
computing. Their solution is based on problem transforma-
tion, and has the advantage of bringing customer savings
without introducing substantial overhead on cloud. How-
ever, those techniques involve cubic-time computational
burden matrix-matrix operations, which may not be
handled by the weak customer in our assumption. Very
recently, Blanton et al. [34] explored secure outsourcing all-
pair distance calculations of large-scale biometric data.
Their focus is on result verification, which leverages certain
structures of the distance computations and the framework
of adding fake items and random sampling.

Difference from conference version [1]. First, we provide
a new mechanism design on secure outsourcing LE via direct
method in Section 3. Second, we thoroughly discuss the
series of practical techniques and mechanism parameter
considerations when implementing the mechanism for
specific applications in Appendix A, available in the online
supplemental material. Third, we provide extended litera-
ture survey on data computation delegation and result
verification in Appendix D, available in the online supple-
mental material. Fourth, we provide a complete yet rigorous
security proof for the Theorem 1 in Section 5.2 and Appendix
C, available in the online supplemental material. Finally, we
greatly improved the performance evaluation with more
clarified experimental settings and evaluation comparison.

8 CONCLUDING REMARKS

In this paper, we investigated the problem of securely
outsourcing large-scale LE in cloud computing. Different
from previous study, the computation outsourcing frame-

work is based on iterative methods. In particular, the design

requires a one-time amortizable setup phase with Oðn
2
Þ cost,

and then each following iterative algorithm execution only
incurs OðnÞ local computational cost with the benefits of easy-

to-implement and less memory requirement in practice. We
also investigated the algebraic property of the matrix-vector
multiplication and developed an efficient and effective
cheating detection scheme for robust result verification.
Thorough security analysis and extensive experiments on the

real cloud platform demonstrate the validity and
practicality of the proposed mechanism.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation (NSF) under grant CNS-1262277, CNS-1116939,

and by Amazon web service research grant. The prelimin-

ary result was published at ICDCS 2011 [1].

REFERENCES

[1] C. Wang, K. Ren, J. Wang, and K. Mahendra Raje Urs,
“Harnessing the Cloud for Securely Solving Large-Scale Systems
of Linear Equations,” Proc. 31st Int’l Conf. Distributed Computing
Systems (ICDCS), pp. 549-558, 2011.

[2] M. Armbrust et al., “A View of Cloud Computing,” Comm. ACM,
vol. 53, no. 4, pp. 50-58, Apr. 2010.

[3] Cloud Security Alliance, “Security Guidance for Critical Areas of
Focus in Cloud Computing,” http://www.cloudsecurityalliance.
org, 2009.

[4] C. Gentry, “Computing Arbitrary Functions of Encrypted Data,”
Comm. ACM, vol. 53, no. 3, pp. 97-105, 2010.

[5] K. Forsman, W. Gropp, L. Kettunen, D. Levine, and J. Salonen,
“Solution of Dense Systems of Linear Equations Arising from
Integral-Equation Formulations,” IEEE Antennas and Propagation
Magazine, vol. 37, no. 6, pp. 96-100, Dec. 1995.

[6] A. Edelman, “Large Dense Numerical Linear Algebra in 1993: The
Parallel Computing Influence,” Int’l J. High Performance Computing
Applications, vol. 7, no. 2, pp. 113-128, 1993.

[7] V. Prakash, S. Kwon, and R. Mittra, “An Efficient Solution of a
Dense System of Linear Equations Arising in the Method-of-
Moments Formulation,” Microwave and Optical Technology Letters,
vol. 33, no. 3, pp. 196-200, 2002.

[8] B. Carpentieri, “Sparse Preconditioners for Dense Linear Systems
from Electromagnetic Applications,” PhD dissertation, CERFACS,
Toulouse, France, 2002.

[9] R. Cramer and I. Damgård, “Secure Distributed Linear Algebra in
a Constant Number of Rounds,” CRYPTO: Proc. Ann. Int’l
Cryptology Conf. Advances in Cryptology, 2001.

[10] K. Nissim and E. Weinreb, “Communication Efficient Secure
Linear Algebra,” Proc. Third Conf. Theory of Cryptography (TCC),
pp. 522-541, 2006.

[11] E. Kiltz, P. Mohassel, E. Weinreb, and M.K. Franklin, “Secure
Linear Algebra Using Linearly Recurrent Sequences,” Proc. Fourth
Conf. Theory of Cryptography (TCC), pp. 291-310, 2007.

[12] P. Mohassel and E. Weinreb, “Efficient Secure Linear Algebra in
the Presence of Covert or Computationally Unbounded Adver-
saries,” CRYPTO: Proc. 28th Ann. Int’l Cryptology Conf., pp. 481-
496, 2008.

[13] J.R. Troncoso-Pastoriza, P. Comesaña, and F. Pérez-González,
“Secure Direct and Iterative Protocols for Solving Systems of
Linear Equations,” Proc. First Int’l Workshop Signal Processing in the
EncryptEd Domain (SPEED), pp. 122-141, 2009.

[14] W. Du and M.J. Atallah, “Privacy-Preserving Cooperative
Scientific Computations,” Proc. IEEE 14th Computer Security
Foundations Workshop (CSFW), pp. 273-294, 2001.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed. Soc.
for Industrial and Applied Math., 2003.

[16] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree

http://www.ijrar.org/

IJRAR1903703 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 467

Residuosity Classes,” EUROCRYPT: Proc. 17th Int’l Conf. Theory
and Application of Cryptographic Techniques, pp. 223-238, 1999.

[17] Amazon.com, “Amazon Elastic Compute Cloud,” http://aws.
amazon.com/ec2/, 2009.

[18] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers,”
CRYPTO: Proc. 30th Ann. Conf. Advances in Cryptology , pp. 465-
482, 2010.

[19] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure Ranked
Keyword Search over Encrypted Cloud Data,” Proc. IEEE 30th Int’l
Conf. Distributed Computing Systems (ICDCS), pp. 253-262, 2010.

[20] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-Grained Access Control in Cloud Computing,” Proc.
IEEE INFOCOM, pp. 534-542, 2010.

[21] C. Wang, K. Ren, S. Yu, and K. Mahendra Raje Urs, “Achieving
Usable and Privacy-Assured Similarity Search Over Outsourced
Cloud Data,” Proc. IEEE INFOCOM, pp. 451-459, 2012.

[22] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed. MIT press, 2008.

[23] D. Benjamin and M.J. Atallah, “Private and Cheating-Free
Outsourcing of Algebraic Computations,” Proc. Sixth Conf. Privacy,
Security, and Trust (PST), pp. 240-245, 2008.

[24] M. Atallah and K. Frikken, “Securely Outsourcing Linear Algebra
Computations,” Proc. Fifth ACM Symp. Information, Computer and
Comm. Security (ASIACCS), pp. 48-59, 2010.

[25] G. Dahlquist and A. Bjorck, Numerical Methods. Dover Publica-
tions, 2003.

[26] M. Bellare, J. Garay, and T. Rabin, “Fast Batch Verification for
Modular Exponentiation and Digital Signatures,” Eurocrypt: Proc.
Int’l Conf. the Theory and Application of Cryptographic Techniques,
pp. 236-250, 1998.

[27] J. Camenisch, S. Hohenberger, and M. Pedersen, “Batch Verifica-
tion of Short Signatures,” EUROCRYPT: Proc. 26th Ann. Int’l Conf.
Advances in Cryptology, pp. 243-263, 2007.

[28] J. Bethencourt, D.X. Song, and B. Waters, “New Techniques for
Private Stream Searching,” ACM Trans. Information Systems
Security, vol. 12, no. 3, article 16, 2009.

[29] S. Han, W.K. Ng, L. Wan, and V.C. Lee, “Privacy-Preserving
Gradient-Descent Methods,” IEEE Trans. Knowledge and Data Eng.,
vol. 22, no. 6, pp. 884-899, June 2010.

http://www.ijrar.org/
http://aws/

