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Abstract—Cloud computing economically enables customers with limited computational resources to outsource large-scale 

computations to the cloud. However, how to protect customers’ confidential data involved in the computations then becomes a major 

security concern. In this paper, we present a secure outsourcing mechanism for solving large-scale systems of linear equations (LE) in 

cloud. Because applying traditional approaches like Gaussian elimination or LU decomposition (aka. direct method) to such large-scale 

LEs would be prohibitively expensive, we build the secure LE outsourcing mechanism via a completely different approach—iterative 

method, which is much easier to implement in practice and only demands relatively simpler matrix-vector operations. Specifically, our 

mechanism enables a customer to securely harness the cloud for iteratively finding successive approximations to the LE solution, while 

keeping both the sensitive input and output of the computation private. For robust cheating detection, we further explore the algebraic 

property of matrix-vector operations and propose an efficient result verification mechanism, which allows the customer to verify all 

answers received from previous iterative approximations in one batch with high probability. Thorough security analysis and prototype 

experiments on Amazon EC2 demonstrate the validity and practicality of our proposed design. 

 
Key Terms—Confidential data, computation outsourcing, system of linear equations, cloud computing 

1 INTRODUCTION 

N cloud computing, customers with computationally weak 
devices are now no longer limited by the slow processing 
speed, memory, and other hardware constraints, but can 
enjoy the literally unlimited computing resources in the 

cloud through the convenient yet flexible pay-per-use 
manners [2]. Despite the tremendous benefits, the fact that 

customers and cloud are not necessarily in the same trusted 
domain brings many security concerns and challenges 

toward this promising computation outsourcing model [3]. 
First, customer’s data that are processed and generated 

during the computation in cloud are often sensitive in 
nature, such as business financial records, proprietary 

research data, and personally identifiable health informa- 
tion, etc. While applying ordinary encryption techniques to 
these sensitive information before outsourcing could be one 

way to combat the security concern, it also makes the task of 
computation over encrypted data in general a very difficult 

problem [4]. Second, since the operational details inside 
the cloud are not transparent enough to customers [3], no 
guarantee is provided on the quality of the computed 
results from the cloud. For example, for computations 
demanding a large amount of resources, there are huge 
financial incentives for the cloud server (CS) to be “lazy” if 
the customer cannot tell the correctness of the answer. 
Besides, possible software/hardware malfunctions and/or 
outsider attacks might also affect the quality of the 
computed results. Thus, we argue that the cloud is 
intrinsically not secure from the viewpoint of customers. 
Without providing a mechanism for secure computation 
outsourcing, i.e., to protect the sensitive input and output 
data and to validate the computation result integrity, it 
would be hard to expect customers to turn over control of 
their computing needs from local machines to cloud solely 
based on its economic savings. 

Focusing on the engineering and scientific computing 
problems, this paper investigates secure outsourcing for 
widely applicable large-scale systems of linear equations 
(LE), which are among the most popular algorithmic and 
computational tools in various engineering disciplines that 
analyze and optimize real-world systems. For example, by 
applying Newton’s method, to solve a system modeled by 
nonlinear equations converts to solve a sequence of 
systems of linear equations. Also, by interior point 
methods, system optimization problems can be converted 
to a system of nonlinear equations, which is then solved as 
a sequence of systems of linear equations as mentioned 
above. By “large,” we mean the storage requirements of 
the system coefficient matrix may easily exceed the 
available memory of the customer’s computing device [5], 
like a modern portable laptop. In practice, there are many 
real-world problems that would lead to very large-scale 
and even systems of linear equations with up to hundreds 
of thousands [6], [7] or a few million unknowns [8]. 

 For example,  

A typical double-precision 50;000 × 50;000 system matrix 

resulted from electromagnetic application would easily 
occupy up to 20 GBytes storage space, seriously 
challenging the computational power of these low-end 
computing devices. Because the execution time of a 
computer program depends not only on the number of 
operations it must execute, but on the location of the data 
in the memory hierarchy [5], solving such large-scale 
problems on custo- mer’s weak computing devices can be 
practically impos- sible, due to the inevitably involved 
huge IO cost. Thus, resorting to cloud for such 
computation intensive tasks can be arguably the only 
choice for customers with weak computing .

 

It is worth noting that in the literature, several crypto- 
graphic protocols for solving various core problems in linear 

algebra, including the systems of linear equations [9], [10], 
[11], [12], [13], [14] have already been proposed from the 
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secure multiparty computation (SMC) community. How- 
ever, these approaches are in general ill suited in the context 
of computation outsourcing model with large problem size. 
First, all these work developed under SMC model do not 
address the asymmetry among the computational power 
possessed by cloud and the customer, i.e., they all impose 
each involved party comparable computation burdens, 
which in this paper our design specifically intends to avoid 
(otherwise, there is no point for the customer to seek help 
from cloud). Second, the framework of SMC usually does not 
directly consider the computation result verification as an 
indispensable security requirement, due to the assumption 
that each involved party is semihonest. This assumption is 
not true any more in our model, where any unfaithful 
behavior by the cloud during the computation should be 
strictly forbidden. Last but not the least, almost all these 
solutions are focusing on the traditional direct method for 
jointly solving the LE, like the joint Gaussian elimination 
method in [10], or the secure matrix inversion method in [11]. 
While working well for small size problems, these ap- 
proaches in general do not derive practically acceptable 
solution time for large-scale LE, due to the expensive cubic- 
time computational burden for matrix-matrix operations and 
the huge IO cost on customer’s weak devices (see discussions 
in Appendix D, which can be found on the Computer Society 
Digital Library at http://doi.ieeecomputersociety.org/ 
10.1109/TPDS.2012.206). 

The analysis from existing approaches and the computa- 
tional practicality motivates us to design secure mechanism 
of outsourcing LE via a completely different approach— 
iterative method, where the solution is extracted via finding 
successive approximations to the solution until the required 
accuracy is obtained. Compared to direct method, iterative 
method only demands relatively simpler matrix-vector 

operations with n
2 computational cost, which is much 

easier to implement in practice and widely adopted for large- 
scale LE [6], [8], [15]. To the best of our knowledge, no 
existing work has ever successfully tackled secure protocols 
for iterative methods on solving large-scale systems of LE in 
the computation outsourcing model, and we give the first 
study in this paper. Specifically, our mechanism utilizes the 
additive homomorphic encryption scheme, e.g., the Paillier 
cryptosystem [16], and allows customers with weak comput- 
ing devices, starting from an initial guess, to securely harness 
the cloud for finding successive approximations to the 

solution in a privacy-preserving and cheating-resilient 
manner. For a linear system with n n coefficient matrix,  
the proposed mechanism is based on a one-time 

amortizable setup with n
2 cost. Then, in each iterative 

algorithm execution, the proposed mechanism only incurs 
n local computational burden to the customer and 
asymptotically eliminates the expensive IO cost, i.e., no 
unrealistic memory demands. To ensure computation 
result integrity, we also propose a very efficient cheating 
detection mechanism to effectively verify in one batch of 
all the computation results by the cloud server from 
previous algorithm iterations with high probability. Both 
designs ensure computational savings for the customer. 
Our contributions are summarized below: For the first 
time, we formulate the problem of securely outsourcing 
large-scale systems of LE via iterative methods, and 
provide mechanism designs fulfilling input/output 

privacy, cheating resilience, and efficiency. 

1. Our mechanism brings computational savings. 
Within each iteration, it incurs OðnÞ computation 
burden for the customer and demands no unrealistic 
IO cost, while solving large-scale LE locally incurs 

Oðn
2
Þ per-iteration cost in terms of both time and 

memory requirements [8]. 

2. We explore the algebraic property of matrix-vector 
operations to design a batch verification mechanism, 
which allows customers to verify all results of 
previous iterations from cloud in one batch. It 
ensures both the efficiency advantage and robust- 
ness of the design. 

3. The experiment on Amazon EC2 [17] shows our 

mechanism helps customers achieve up to 2:22 × 

savings when the sizes of the LE are relatively small 

(n ≤ 50;000). Better efficiency gain can be easily 

anticipated when n goes to larger size. In particular, 

when n ¼ 500;000, the anticipated savings can be 

up to 26:09×. 

The rest of the paper is organized as follows: Section 2 
introduces the system and threat model, and our design 
goals. Then, we provide the detailed mechanism descrip- 
tion and security analysis in Sections 3, 4, and 5. Section 6 
gives the performance evaluation, followed by Section 7 
which overviews the related work. Finally, Section 8 gives 
the concluding remark. 

 

 

 

 

 
2 PROBLEM STATEMENT 

 System and Threat Model 

We consider a computation outsourcing architecture 
involving cloud customer and cloud server illustrated in 

Fig. 1. The customer has a large-scale LE problem Ax b, 

denoted as Ø A; b , to be solved. However, due to the 
lack of computing resources, he cannot carry out such 

expensive ( np 2 < p   3 )  computation  locally.  Thus, 
the customer resorts to cloud server for solving the LE 
problem. For data protection, the customer first uses a 

secret key K to map Ø into some encrypted version ØK. 

Then, based on ØK, the customer starts the computation 

outsourcing protocol with CS, and harnesses the cloud 
resources in a privacy-preserving manner. The CS is 
expected to help the customer finding the answer of 

ØK, 
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Fig. 1. Architecture of secure outsourcing large-scale systems of linear 
equations in cloud computing. 

 
but supposed to learn as little as possible on the sensitive 

information in Ø. After receiving the solution of encrypted 

problem ØK, the customer should be able to first verify the 

answer. If it’s correct, he then uses the secret K to map the 

output into the desired answer for the original problem Ø. 

As later we shall see in the proposed model, the customer 
still needs to perform a one-time setup phase of encrypting 

the coefficient matrix with relatively costly Oðn
2
Þ 

computation.1 But it is important to stress that this process 
can be performed under a trusted environment where the 

weak customer with no sufficient computational power 
outsources it to a trusted party. (Similar treatments have 

been utilized in [18]). The motivating example can be a 
military application where the customer has this one-time 
encryption process executed inside the military base by a 
trusted server, and then goes off into the field with access 
only to untrusted CS. Another example can be the customer 

has the system modeling coefficient matrix A encrypted on 

his company’s workstation, and then uses his portable 
device outside while still hoping to make timely decisions 

(derive solutions xi) based on different observation bi in the 

field, for i ¼ 1; 2; ... ; s. Thus, to make the rest of the paper 

easier to catch, we assume that CS is already in possession 
of the encrypted coefficient matrix, and the customer who 
knows the decryption key hopes to securely harness the 
cloud for on-demand computing outsourcing needs, i.e., 

solving LE problems fAx ¼ big. 

The security threats primarily come from the malicious 
behaviors of CS, which may behave beyond “honest-but- 
curious” model as assumed by other works on cloud 
security (e.g., [19], [20], [21]). In addition to being interested 

in learning the sensitive input/output information of Ø, CS 

can behave unfaithfully or intentionally sabotage the 
computation, e.g., to lie about the result to save the 
computing resources, while hoping not to be caught. 

 Design Goals 

To enable secure and practical outsourcing of LE under the 
aforementioned model, we have the following design goals: 
1) Input/output privacy: No sensitive information from the 
customer’s private data can be derived by the cloud server 
during faithfully performing the LE computation; 2) Robust 
cheating detection: Output from faithful cloud server must 
be verified successfully by the customer. No output from 
cheating cloud server can pass the verification with 
nonnegligible probability. 3) Efficiency: The local 
computation burden, in terms of both time and memory 

 
1. The encryption on each element of the matrix coefficient is 

independent, and thus can be easily parallelized. Doing each of these one-
time element encryptions does not have to load the whole coefficient matrix 
in memory in the first place. As an example of parallelization, enabling 
double threading on a six core system could easily speedup the operation 

efficiency with a factor of 12. requirements, for the customer 
should be much less than solving the original LE on 
his own. 

 Preliminaries and Notations 

 Iterative Method 

In many engineering computing and industrial applications, 
iterative method has been widely used in practice for solving 
large-scale LE [6], and sometimes is the mandatory choice 
[15] over direct method due to its ease of implementation 
and relatively less computational power consumption, 
including the memory and storage IO requirement [8]. We 
now review some basics on the general form of stationary 
iterative methods for solving LE problems. A system of 
linear equations is written as 

Ax ¼ b; ð1Þ 

where x is the n 1 vector of unknowns, A is an n n 

(nonsingular) coefficient matrix, and b is an n 1 right-hand 
side vector (so called constant terms). Most iterative methods 
involve passing from one iteration to the next by modifying a 
few components of some approximate vector solution at a 
time until the required accuracy is obtained. Without loss of 
generality, we focus on Jacobi iteration [15] here and 
throughout the paper presentation for its simplicity. Though 
extensions to other stationary iterative methods can be 
possible, we don’t study them in the current work. We begin 

with the decomposition: A D R, where D is  the 

diagonal component, and R is the remaining matrix. Then, 

the (1) can be written as Ax D R x b, and finally 

reorganized as: x D—1 R  x  D—1  b. According to the 
Jacobi method, we can use an iterative technique to solve the 

left hand side of this expression for xðkþ1Þ, using previous 

value for xðkÞ on the right hand side. If we denote iteration 

matrix T D—1 R and c D—1 b, the above  iterative 
equations can be represented as 

xðkþ1Þ ¼ T · xðkÞ þ c: ð2Þ 

The convergence is not always guaranteed for all matrices, 
but it is the case for a large body of LE problems derived 
from many real-world applications [15]. 

 

 Homomorphic Encryption 

Our construction utilizes a semantically secure encryption 
scheme with additive homomorphic property. Given two 

integers   x1   and   x2,   we   have   Encðx1 
x
þ x2Þ ¼ Encðx1Þ m  

Encðx2Þ, and also Encðx1 m x2Þ ¼ Encðx1Þ 2 . In our  imple- 
mentation we adopt the Paillier cryptosystem [16]. For a 

vector   x ¼ ðx1; x2; . . . ; xnÞ
T  

2 ðZZN Þ
n,   we   use   EncðxÞ   to 

denote the coordinate-wise encryption of x: EncðxÞ¼ 

ðEncðx1Þ; Encðx2Þ; . . .  ; EncðxnÞÞ . For some n × n matrix 

T, where  each  of  the  component  T½i; j] in  T  is  from  ZZN ,  

we denote the component-wise encryption of T as EncðTÞ, 
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and we have EncðTÞ½i; j] ¼ EncðT½i; j]Þ. 

 
3 THE  BASIC SOLUTION 

In this section, The basic solution is described under the 
general framework consisting of three phases: 
(ProbTransform, ProbSolve, ResultVerify). The analysis of 
this basic solution gives insights and motivations on our 
main mechanism design based on iterative methods. 

Specifically, in the ProbTransform phase, the customer 

picks a random vector r 2 IRn as his secret keying material. 

Then, he rewrites (1) as Aðx þ rÞ ¼ b þ Ar. Let y ¼ x þ 

r and b0 ¼ b þ Ar, we have Ay ¼ b0. To hide the 

coefficient matrix A, the customer selects a random 

invertible matrix Q with the same size as A. Left 

multiplying Q to both sides of Ay ¼ b0 give us 

A0y ¼ b00; ð3Þ 

where  A0 ¼ QA and  b00 ¼ Qðb þ ArÞ.  Clearly,  as  Q and 

r are chosen randomly and kept as secret, cloud has no 

way to know A; b; x , except the dimension of x. 
The customer can then start the ProbSolve phase by 

outsourcing ØK ¼ ðA0; b00 Þ to the cloud, who solves ØK 

and sends back answer y. After verifying the correctness of 

y, the customer can derive the original x via x ¼ y — r. 

Remark. While achieving the input/output protection, this 
approach is not attractive for the following reasons: 
1) The local problem transformation cost for matrix 

multiplication QA is Oðn
3
Þ, which is comparable to the 

cost of solving Ax b [22]. Considering the extra cost of 

ResultVerify, the discussion of which we intentionally 
defer to a later Section 5, there is no guaranteed  
computational saving for the customer. 2) The local cubic 
time cost can become prohibitively expensive when n 
goes large to the orders of hundreds of thousand. 
Besides, it violates our assumption in Section 2 that the 

customer cannot carry out expensive OðnpÞð2 <p ≤ 3Þ 

computation locally. 
In the recent literature [23], [24], Atallah et al. have 

proposed works for secure outsourcing matrix multi- 

plication using only n
2 local complexity. However, in 

practice those works can hardly be applied to our case of 

calculating Q A for (3). The reason is that  in  their  

works, either noncollusion servers are required [23], or 
scalar operations are expanded to polynomials and thus 
incur huge communication and computation overhead 
[24]. Both assumptions are difficult to be met in practice. 
(See detailed discussion at Section 7). 

such as the statistical calculations [25], the radar 
cross-section calculations [6], etc. 

2. Although proper preconditioning techniques (e.g., 

[5], [6], [7], [8], [15]) on the coefficient matrix A can 

significantly improve the performance of iterative 
method, we do not study the cost of these techniques 
in this paper. As we focus on the security design, we 

assume the coefficient matrix A already ensures fast 

enough convergence behavior, i.e., the number of 
iterations L n. 

3. We assume the matrix A is first transformed  to    

T ¼ D—1 · R, where A ¼ D þ R as in (2), and then 

stored in cloud in its encrypted form EncðTÞ via an 

additive homomorphic encryption. As stated in our 
system model, this one-time setup phase is done 
before ProbTransform phase by some trusted work- 
station under different application scenarios. Here- 
inafter, we may interchangeably use the two forms 

of coefficient matrix A or T without further notice. 

4. For ease of presentation, we defer the cheating 
detection to Section 5. 

 Problem Transformation 

For protection of result x, the customer who has coefficient 

vector b and seeks solution x satisfying Ax b cannot 
directly start the ProbSolve with cloud. Thus, we need a 
transformation technique to allow the customer to properly 
hide such information first. Similar to the basic mechanism, 
in the ProbTransform phase, the customer picks a random 

vector r IRn as his secret keying material, and rewrites (1) 
as the new LE problem 

Ay ¼ b0; ð4Þ 

where y x r and b0 b Ar. Clearly, the solution x to 
(1) can be found by solving a transformed LE problem in (4), 

and vice versa. At this point, both the output x and input 

tuple b have been well hidden by random vector r. Next, 
we reformulate (4) into the iterative form similar as (2): 

 

yðkþ1Þ ¼ T · yðkÞ þ c0; ð5Þ 

4 THE PROPOSED SOLUTION 
where  T ¼ —D—1 · R,  c0 ¼ D—1 · b0,  and  A ¼ D þ R.  Now 

the   problem   input   Ø ¼ ðA; bÞ   is   changed   to   tuple 
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The above observation and discussion shows that direct 
method-based approach might not be a good option for 
resource-limited customers for secure outsourcing large- 

scale LE with computational savings in mind. This 
motivates us to design secure outsourcing mechanism 
using iterative method. To better facilitate the mechanism 
design to be explored next, we first make some general but 
nonstringent assumptions about the system as follows: 

1. We assume the coefficient matrix A is a general 

nonsingular matrix that ensures a solution to the 
system after convergence of iterative approxima- 

tions.2 For simplicity, one such example for A is to be 

a strictly diagonally dominant matrix. Note that this 
is not a stringent requirement, as many real-world 
formulated LE problems satisfy this assumption, 

 
2. According to the general result in [15], the necessary and sufficient 

condition for convergence is that the maximum modulus of eigenvalues of 

iteration matrix T ¼ —D—1 · R is less than 1. 

ØK      T; c0  ,  where  T  has  already  been  encrypted  and 

stored as Enc T   at cloud, and c0 is just a randomly 

masked version of b via random n 1 vector r. The output 

x is also masked by y x r. This whole procedure is 
summarized as Algorithm 1 in Appendix B, available in 
the online supplemental material. 

Remark. This problem transformation only requires locally 

two   matrix-vector   multiplications:   b0 ¼ b þ Ar   

and c0 ¼ D—1 · b0 with n
2 þ n scalar multiplications. 

When n goes large, expensive IO cost at customer device 
might downgrade the performance of such operations. 
By comparing (2) and (5), it is easy to see that this 

transformation does not affect the matrix of A (or T), 

which gives us advantage of reusing. Specifically, the 

customers with different constant terms bi can run this 

transformation multiple times by choosing a different r 

each time and then harness the cloud for solving different 

LE problems fAx ¼ big, as seen in Appendix A.2, 

available in the online supplemental material.The 
Iterative Problem Solving 

After the problem transformation step, now we are ready for 
the ProbSolve phase. Our goal is to let the customer securely 
harness the cloud for the most expensive computa- tion,  i.e., 

the  matrix-vector  multiplication  T · yðkÞ  in (5)  for each 

algorithm iteration, k ¼ 1; 2; . . .  ; L. Since it is an iterative 

computing process, we only describe the very first round of 
the process as follows. We leave the analysis of convergence 
and input/output protection in later sections. In what 
follows, we assume our main protocol of solving LE works 
over integers. All arithmetic is modular with respect to the 
modulus N of the homomorphic encryption, and the 
modulus is large enough to contain the answer. Details on 
how to handle noninteger numbers is given in Appendix A, 
available in the online supplemental material. 

1. For the very first iteration, the customer starts the 
initial guess on the vector yð0Þ ¼ ðyð0Þ; yð0Þ; . . . ; yð0Þ Þ

T , 
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Since we assume the matrix A ensures convergence, to 
determine the termination, the customer tests if 

 

kyðkÞ — yðkþ1Þk ≤ s; ð7Þ 

for some small enough s> 0. And the termination point 

yðkþ1Þwill help get the final result x via x ¼ yðkþ1Þ — r. The 

local computation cost for each iteration is still OðnÞ. 
 Input/Output Privacy Analysis 

 Output Privacy Analysis 

From above protocol instantiation, we can see that 
throughout the whole process, the cloud server only sees 

the plaintext of yðkÞ, the encrypted version of matrix EncðTÞ, 

and encrypted vectors EncðT · yðkÞÞ, k ¼ 1; 2; . . . ; L. Since 

y is a blinded version of original solution x, it is safe to 

send y to the cloud in plaintext. No information of x would 

be leaked as long as r is kept secret by the customer. Note 

that 

1 2 
and then sends it to the cloud. 

n 

this analysis can be easily extended to the case of 

2. The cloud server, in possession of the encrypted 

matrix EncðTÞ, computes the  value  EncðT · yð0Þ Þ 

by using the homomorphic property of the 
encryption: 

outsourcing a series of equations fAx ¼ big, since for each 
individual Ax ¼ bi, an independently picked random ri 

can be used to protect the output privacy accordingly. 

 
n 

EncðT · yð0Þ Þ½i] ¼ Enc 
j¼1 

Yn 

T½i; j] · yð0Þ

!

 

yð0Þ 

 

ð6

Þ 

 Input Privacy Analysis 

While the output is protected well, it is worth noting that 
some knowledge about the input tuple Øk ¼ ðT; c0Þ could be 
implicitly leaked through the protocol execution itself. The 

¼ 
j¼1 

EncðT½i; j]Þ j    

; 

ð0Þ 

reason is as follows: for each two consecutive iterations of 

the protocol, namely, the kth and the ðk þ 1Þth, the cloud 

for i ¼ 1; .. . ; n, and sends EncðT · y Þ to customer. 

3. After  receiving  EncðT · yð0Þ Þ,  the  customer  decrypts 

and  gets  T · yð0Þ  using  his  private  key.  He  then 

updates  the  next  approximation  yð1Þ ¼ T · yð0Þ þ c0 

via (5). 

For the kth iteration, it follows that the customer sends 

the   kth   approximation   yðkÞ   to   cloud.   The   cloud   sends 

EncðT · yðkÞ Þ to  the  customer  for  the  next  update  of  yðkþ1Þ. 

The protocol continues until the result converges, as shown 
in Algorithm 2 in Appendix B, available in the online 
supplemental material. 

Remark. In each iteration, the dominant customer’s compu- 
ðkÞ 

server  sees  actually  the  plaintext  of  both  yðkÞ  and  yðkþ1Þ . 
Thus, a “clever” cloud server could initiate a system of 
linear equations via (5) and attempts to learn the unknown 

components  of  T and  c0.  More  specifically,  for  the  total  L 

iterations, the cloud server could establish a series of ðL — 

1Þ × n equations from yðkÞ, k ¼ 0; 1; . . . ; L — 1,3 while 

hoping to solve n2 þ n unknowns of T and c0. 

However, as we have assumed in Section 4 that various 
preconditioning techniques can ensure fast enough conver- 
gence behavior, we have the number of iterations L n. (In 
fact, if L is close or even larger than n, there would be no 
advantage of using iterative  method over  direct method at 
all.) As a result, from the ðL — 1Þ× n equations, the n2 þ n 
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k¼

1 intermediate   results,   
f ẑ 

¼ T · 
ŷ  

g, k ¼ 1; 2; ... ; L, re- 

tation overhead is to decrypt the vector of EncðT · y Þ, 
which takes OðnÞ complexity, and in general does not 
require expensive IO cost. This is theoretically less than the 

Oðn
2
Þ cost demanded by the matrix-vector multiplication 

T · yðkÞ of (5) in terms of time and memory requirements. 

Note that the theoretical computation efficiency gain can 
only be exhibited when the problem size n goes large, since 
the decryption computation is generally more expensive 
than the plaintext arithmetic operation. But large-scale LE 
is exactly the case we are focusing on by using iterative 
methods. Later in Section 6, we show performance results 
and discuss the possible selections of the size n for the 
problems. Also note that the communication overhead 
between the customer and the cloud is only two vectors of 
size n for each iteration, which is reasonably small. 

4.3 Convergence Analysis 

When dealing with iterative methods, it is a must to 
determine whether and when the iteration will converge. 

components  of  T  and  c0  is  largely  underdetermined  and 

cannot be exactly determined by any means. Thus, as long 
as the cloud server has no previous knowledge of the 

coefficient matrix A, we state that such bounded informa- 

tion leakage from ðL — 1Þ× n equations can be negligible, 

especially when the size of problem n goes very large. 

In fact, we can further enhance the guarantee of input 

privacy by introducing a random scaling factor ak 2 ZZN 

for each iteration to break the linkability of two 
consecutive iterations of the protocol. Here, the choice of 
ak should not introduce overflows with respect to the 
large arithmetic modulo N . Specifically, instead of 

sending yðkÞ to the cloud server, the customer sends ak · 

yðkÞ for the kth iteration of the ProbSolve. When the cloud 

server sends back the encrypted value Enc ak   TyðkÞ  , the 

customer just simply decrypts the vector of ak   Tyðkþ1Þ, 

divides each component with ak, and then updates the 

next approximation yðkþ1Þ via (5). Similarly, 

3. Note that yðLÞ as the final answer is not transmitted to the cloud server. 

for the next iteration another random scaling factor akþ1 is 

multiplied to yðkþ1Þ before sent to the cloud server. 

Remark. With the random scaling factor ak, the original 

value of yðkÞ is well protected via akyðkÞ. Thus, the cloud 

server can no longer directly establish linear equations 

from   received   akyðkÞ   and   akþ1y
ðkþ1Þ,   but   a   series   of 

nonlinear equations with extra random unknowns 

a1; a2; . . .  ; aL. While this method further enhances the 

guarantee of input privacy by bringing extra randomness 

and nonlinearity of the system equations, it does not 
incurs any expensive operation, Finally, we should note 
that the above analysis on the input privacy does not 

affect the output protection of x. This is because the 

random secret r protects x from y and the original 

constant term b from transformed c0. 

 
5 CHEATING DETECTION 

Till now, the proposed protocol works only under the 
assumption of honest but curious cloud server. However, in 
many cases, an unfaithful cloud server could sabotage the 
protocol execution by either being lazy or intentionally 
corrupting the computation result. Next, we propose to 
design result verification methods to handle these two 
malicious behaviors. Our goal is to verify the correctness of 
the solution by using as few as possible expensive matrix- 
vector multiplication operations. In the following, we denote 

zðkÞ ¼ T · yðkÞ  as the expected correct responses, and ẑðkÞ ¼ 

T · ŷ ðkÞ as the actual received value from cloud server, where 

matrix-vector multiplication of (8) only needs to be executed 
at most once throughout the protocol execution. 

5.2 Dealing with Truly Malicious Adversary 

While a lazy adversary only sends previous result as the 
current one, a truly malicious adversary can sabotage the 
whole protocol execution by returning arbitrary answers. 
For example, the malicious cloud server could compute (6) 

via arbitrary vectors ŷ ðkÞ  other than customer’s yðkÞ. In 

the worst case, it would make the protocol never converge, 
wasting the resources of the customer. Thus, we must design 
an efficient and effective method to detect such malicious 
behavior, so as to ensure the result quality. The straightfor- 
ward way would be to redo the matrix-vector multiplication 

T · yðkÞ  and  check  if  it  equals  to  the  received ẑðkÞ  for  

each iteration k. This is not appealing since it consumes 
equivalent amount of resources in comparison to that of 
computing the results directly. Below we utilize the 
algebraic property of matrix-vector multiplication and 
design a method to test the correctness   of   all   received   

answers   ẑðkÞ ¼ T · ŷ ðkÞ,   k ¼ 1; 2; . .  . ; L in only one 

batch, i.e., using only one matrix- vector multiplication. 
Note that batch verification is not a new idea and has been 
studied in cryptographic contexts, e.g., fast digital 
signature verifications [26]. 

Suppose after L iterations, the solution still does not 
converge. The customer can initiate a ResultVerify phase by 

randomly selecting L numbers, α1; α2; . . . ; αL from B c ZZN , 

where each αk is of l-bit length and l<  log N. He then 

computes the linear combination & over the yðkÞ’s, which he 
has provided in the previous k iterations, k ¼ 1; 2; . . .  ; L: 

k ¼ 1; 2; ... ; L. We also assume L≤ L, meaning the Result- 

 

& ¼ 
PL     

αk · yðkÞ.  Next,  to  test  the  correctness  of  all  the 

5.1 Dealing with Lazy Adversary 

We first consider detecting the laziness of cloud server. 
Since computing the addition and multiplication over 

ceived from cloud server, the customer simply checks if 
the following equation holds: 

XL 

Verify phase is initiated within at most L iterations. 
ðkÞ ðkÞ 
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—l 

encrypted domain could cost a lot of computational power, 
the cloud server might not be willing to commit service- 
level-agreed  computing  resources  in  order  to   save  cost. 

T · & ¼
?
 αk 

k¼1 

· ẑðkÞ: ð9Þ 

More severely, for the kth iteration, the adversary could 

simply  reply  the  result  zðk—1Þ  of  the  previous  ðk — 1Þth 

The above equation can be elaborated as follows: 

XL 

iteration without computation. 

As  a  result,  the  customer  who  uses  zðk—1Þ  to  update  for 

the next yðkþ1Þ will get the result yðkþ1Þ ¼ yðkÞ. Consequently, 

T · & ¼ T · 

XL 

 
k¼

1 

αk · y
ðkÞ 

XL 

he may be incorrectly led to believe the solution of equation 

Ay ¼ b0  is  found.  Thus,  for  the  malicious  adversary,  only 
¼ 

k¼

1 

αk · T · yðkÞ ¼  
k¼

1 

αk · ̂ zðkÞ: 

checking the (7) is not sufficient to convince the customer 
that the solution has converged. According to (4) one 
further step has to be executed as 

 

kAyðkþ1Þ — b0k ≤ s: ð8Þ 

Remark. This checking equation incurs the local cost of Oðn
2
Þ 

for customer. While potentially expensive for large size of 
n, we should note that it does not have to be executed 
within every iteration. It only needs to be tested after the 

test on yðkÞ and yðkþ1Þ via (7) is passed. If (7) is not passed, it 

means yðkþ1Þ is not the convergence point yet. On the other 

hand, if (7) is successfully passed, we can then initiate the 
test of (8). If (8) holds, we say the final solution is found, 

which is x ¼ yðkþ1Þ — r. If it doesn’t, we can tell that the 

cloud server is cheating (being lazy). In either case, this 

Since each αk is chosen randomly from B ¼ f0; 1g
l  
c ZZN , 

we have the following theorem capturing the 
correctness and soundness of the cheating detection 
method: 

Theorem 1. The result verification (9) holds if and only if ẑðkÞ 

¼ T · yðkÞ for all k ¼ 1; 2; . . . ; L, with error probability at 

most 2 . 

Proof. See Appendix C, available in the online supple- 
mental material.
 u
t 

Remark. It is easy to tell that the computation overhead of 
(9) is only bounded by one matrix-vector 
multiplication of the left-hand-side of the equation 
(recall L≤  L n). The size of l is a tradeoff between 
efficiency and security.  
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¼ 

¼ 

 

TABLE 1 
Transformation Cost for Different Problems 

 
  

    

  

   

  

   

  

   

  

   

  

   

  

   

  

   

 
 

reasonable choice of 20 bits of l is also acceptable [27]. 
Note that in practice this result verification does not need 
to happen very frequently, because the property of batch 
verification ensures the quality of all previous received 

values  f ẑðkÞ ¼ T · ŷ ðkÞg,  k ¼ 1; 2; . . . ; L.  Thus,  the  

custo- mer can preset the threshold L as sufficiently 
large such that either he detects the unfaithful behavior 
of cloud server or the program will converge soon after 
L iterations. In the best case, (9) only needs to be 
instantiated once. Combined with (8), we can see that 
our method for cheating detection indeed achieves as 
few as possible expensive matrix-vector multiplication 
operation. As a result, the overall design asymptotically 
eliminates the expensive IO cost on customer throughout 
the successive approximation process for seeking the 
solution as well as result verification. 

generate a random matrix with coefficient ranges from —1 

to 1 and then add it with a diagonal matrix with large 

diagonals, e.g., 100 in case of n 20;000 . The scaling factor 

for real numbers is set to be 103 (See Appendix A, available 

in the online supplemental material). The solutions are all 
converged within 50 iterations when termination threshold 

s ¼ 0:001. Since the computation dominates the running 

time as evidenced by our experiment, we ignore the 
communication cost. All results represent the mean of 10 
trials. In order to handle large-scale matrix-vector opera- 
tions, proper matrix splitting approaches are used, which 
demonstrates how the IO cost could significantly down- 
grade the performance if the whole computation is solely 
performed on the customer’s local machine. 

 Problem Transformation Cost 

We first summarize the cost for customer performing 
ProbTransform. As shown in Section 4.1, the transformation 
cost is dominated by the two matrix-vector multiplication in 
(5). Note that when n goes large, the resulted matrix would be 
too large to be hold in customer’s local machine memory. 
Thus, the matrix-vector multiplication cannot be performed 
in one step. Instead, the matrix has to be split into multiple 
submatrices, and each time only a submatrix can be loaded in 
the memory for computing a portion of the final result. In our 
experiment with 1 GB RAM laptop, we split the matrix into 
submatrices with 200 MB each. This has taken into account the 
memory occupation from OS load-up and easy in-memory 
operations and suits the assumption of weak customer 
device. The time results for different problem sizes are shown 

6 PERFORMANCE ANALYSIS 
in Table 1. For the largest benchmark size n 50;000, 
the problem transformation only costs around 22 minutes on 
our 

We implement our mechanisms using C language. Algo- 
rithms utilize the GNU Scientific Library, the GNU Multiple 
Precision Arithmetic Library, and the Paillier Library with 
modulus N of size 1,024 bit. The customer side process is 
conducted on a laptop with Intel Core 2 Duo processor 
running at 2.16 GHz, 1 GB RAM, and a 5,400 RPM Western 
Digital 250 GB Serial ATA drive with an 8 MB buffer. The 
cloud side process is conducted on Amazon Elastic 
Computing Cloud (EC2) with High-Memory instance type 
[17]. Our randomly generated diagonally dominant test 
benchmark focuses on the large-scale problems only, where 
n ranges from 5,000 to 50,000, and serve for the purpose of 
validating the performance of the design. To ensure good 
condition number and the convergence of solutions, we first 

laptop. Compared to the baseline experiment where the 
customer solves the equation by himself (shown in the next 
section), such computational burden should be considered 
practically acceptable. And it can be easily amortized 
throughout the overall iterative algorithm executions for 
getting one problem solution, when we compare the 
customer’s local average computation cost per iteration. 

 Local Computation Comparison 
In our protocol by harnessing the computation power of 
cloud, the dominant operation in each iteration for customer 
is only to perform n decryptions. If the customer solves the 
problem by himself, which is the baseline of our comparison, 
the dominant computation burden within each iteration 
would be the matrix-vector multiplication with the input siz
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× 
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TABLE 2 

The Average per-Iteration Cost for 
Customer Computation 
Comparison 

 
    

 

   
 

       
 

 
 

   
 

     
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

  

 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

  

 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

  

 

  

The entry with “×” indicates the positive efficiency gain is achieved. 

 
          
  

 
 

      
   

          

          

          

          

          
 

   
 

   
 

 

Fig. 2. Comparison of customer’s average Per-Iteration computation 
cost among baseline and our scheme with different choices of key 
length. 

 

n
2. We compare the two computation cost in Table 2, where 

both timing results and estimated memory consumption for 
each single algorithm iteration are reported. Note that the 
reported measurements are the average per-iteration cost, 
which have taken into account the problem transformation in 
amortized fashion already. To better present the trend of the 
efficiency gain between the two experiments, the timing 
comparison results are also plotted in Fig. 2. 

To have a fair comparison, again we have to consider the 
memory requirements incurred by the two operations. In 
particular, when n goes large, the IO time has to be taken into 
consideration. Similar to the transformation cost test, in our 
baseline experiment, each matrix is split into submatrices 
with 200 MB each for easy in-memory arithmetic operation. In 
this way, when performing the matrix-vector multiplication 

for a  50;000  50;000  matrix  with  20  GB  space,  at  least  

100 times expensive IO operations for a 200 MB submatrix 
have to be performed, which significantly increases the total 
time cost in our baseline experiment, as shown in Fig. 2. On 
the other hand, our proposed scheme only demands local n 
decryption operations, which does not have such demands. 
For 1,024 bit key, each ciphertext is of size 2,048 bit, i.e., 256 

byte (see Section 2.3.2). Therefore, holding the 50;000 1 

encrypted vector only needs 50;000 256 Bytes < 13:0 MB 

memory, which can be easily satisfied by modern portable 
computing devices. Thus, the total local computation cost 
simply goes linearly with the problem size n. To show 
possible tradeoffs between security and performance, we also 
conduct  the  experiment  with  reduced  key  length  of  the 

Paillier  cryptosystem.  This  is  motivated  by  applications 
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¼ 
× 

¼ 

× 
¼ 

¼ 
¼ 

Oð Þ 
Oð Þ 

¼ 
¼ 

Oð  Þ Oð Þ 

where only short term guarantees of secrecy (the 

coefficient matrix of A) may be required. (See short key 

experiments in [28], [29], for example.) Thus, if the customer 
accepts a smaller key length, the total timing will be 
reduced. 

We can see that the crossover point occurs around n 

48;000 for a 1,024 bit key and n  22;000 for a 768 bit key 

in Fig. 2, where the trend of the efficiency gain among

 n and  n
2 is also clearly shown. In case of 

768 bit key, when n 50;000, the customer’s local 
computation cost in the baseline   experiment   would  be  

2:22 more than the proposed scheme. Note that n

 50;000 is not an unreason- ably large matrix. Many 
real-world application, e.g., problems from 
electromagnetic community, could easily lead to a dense 
system of linear equations with more than 200,000 
unknowns [8]. Though in this work we didn’t try problem 
size larger than 50,000, the better efficiency gain for larger 
scale problems can be easily anticipated from the clear 

trend among  n  and  n2 shown in Fig. 2. For 

example, when n 500;000, the anticipated 

computational saving for  customer  can be  up to  26. 09 

 . Note that the choice of in-memory storage does not 
affect the theoretical analysis on the computation gain. 
Also, from the experi- mental observation, as long as n 

goes large, i.e., for large- scale LE problems, the 
computational savings can always be expected by the 
customer. 

 

 Cloud Computation Cost 

The cloud side computation cost for each iterated algorithm 
execution is given in Table 3. The third and forth columns 
lists the cloud computation time when there is only one 
instance running. However, as stated in Appendix A.3, 
available in the online supplemental material, we can utilize 
the cost associativity of cloud computing to speedup the 
cloud server computation via task parallelization without 
introducing additional cost to customers. Thus, the fifth and 
the sixth columns lists the estimated cloud computation time 
when multiple t Amazon EC2 instances are running 
simultaneously. By configuring  a  proper choice  of  t   

100, 
even for the largest size of the problem n 50;000, the cloud 
side computation can be finished within around 20 minutes 
for each round. Given the security property our mechanism 
has provided, such time cost can be deemed reasonable. 

 
7 RELATED WORK 

Recently, a general result of secure computation outsour- 
cing has been shown viable in theory [18], which is based on

 
TABLE 3 

Cloud Side Computation Cost for Different Choices of Keys and Number of Simultaneously Running EC2 Instances t 
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Yao’s garbled circuits [30] and Gentry’s fully homomorphic 
encryption (FHE) scheme [31]. However, applying this 
general mechanism to our daily computations would be far 
from practical, due to the extremely high complexity of FHE 
operation and the pessimistic circuit sizes that can hardly be 
handled in practice. Instead of outsourcing general func- 
tions, in the security community, Atallah et al. explore a list 
of customized solutions [23], [24], [32] for securely out- 
sourcing specific computations. In [32], they give the first 
investigation of secure outsourcing of numerical and 
scientific computation, including LE. Though a set of 
problem dependent disguising techniques are proposed, 
they explicitly allow private information leakage. Besides, 
the important case of result verification is not considered. In 
[23], Atallah and Bejanmin give a protocol design for secure 
matrix multiplication outsourcing. The design is built upon 
the assumption of two noncolluding servers and thus 
vulnerable to colluding attacks. Later on in [24], Atallah and 
Frikken give an improved protocol for secure outsourcing 
matrix multiplications based on secret sharing, which 
outperforms their previous work [23] in terms of single 
server assumption and computation efficiency. But the 
drawback is that due to secret sharing technique, all scalar 
operations in original matrix multiplication are expanded to 
polynomials, introducing significant communication over- 
head. Considering the case of the result verification, the 
communication overhead must be further doubled, due to 
the introducing of additional precomputed “random noise” 
matrices. In short, these solutions, although elegant, are still 
not efficient enough for immediate practical uses on large- 
scale problems, which we aim to address for the secure LE 
outsourcing in this paper. Wang et al. [33] give the first 
study of secure outsourcing of linear programming in cloud 
computing. Their solution is based on problem transforma- 
tion, and has the advantage of bringing customer savings 
without introducing substantial overhead on cloud. How- 
ever, those techniques involve cubic-time computational 
burden matrix-matrix operations, which may not be 
handled by the weak customer in our assumption. Very 
recently, Blanton et al. [34] explored secure outsourcing all- 
pair distance calculations of large-scale biometric data. 
Their focus is on result verification, which leverages certain 
structures of the distance computations and the framework 
of adding fake items and random sampling. 

Difference from conference version [1]. First, we provide 
a new mechanism design on secure outsourcing LE via direct 
method in Section 3. Second, we thoroughly discuss the 
series of practical techniques and mechanism parameter 
considerations when implementing the mechanism for 
specific applications in Appendix A, available in the online 
supplemental material. Third, we provide extended litera- 
ture survey on data computation delegation and result 
verification in Appendix D, available in the online supple- 
mental material. Fourth, we provide a complete yet rigorous 
security proof for the Theorem 1 in Section 5.2 and Appendix 
C, available in the online supplemental material. Finally, we 
greatly improved the performance evaluation with more 
clarified experimental settings and evaluation comparison. 

 
8 CONCLUDING REMARKS 

In this paper, we investigated the problem of securely 
outsourcing large-scale LE in cloud computing. Different 
from previous study, the computation outsourcing frame- 

work is based on iterative methods. In particular, the design 

requires a one-time amortizable setup phase with Oðn
2
Þ cost, 

and then each following iterative algorithm execution only 
incurs OðnÞ local computational cost with the benefits of easy- 

to-implement and less memory requirement in practice. We 
also investigated the algebraic property of the matrix-vector 
multiplication and developed an efficient and effective 
cheating detection scheme for robust result verification. 
Thorough security analysis and extensive experiments on the 

real cloud platform demonstrate the validity and 
practicality of the proposed mechanism. 
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