

T-Anti Q Fuzzy subsemiring

B. Anitha

PG and Research Department of Mathematics,
Government Arts College, C.Mutlur, Chidambaram

Abstract: In this paper the concept of t- Anti Q Fuzzy subsemiring(normal subsemiring) and t- Anti Q Fuzzy ideals are introduced and some of its properties are discussed. The homomorphic behavior of t- anti Q Fuzzy subsemiring and t- anti Q Fuzzy ideals and inverse images are studied.

Keywords: Q Fuzzy set (QFS), Anti Q Fuzzy subsemiring (AQFSSR), Anti Q Fuzzy normal subsemiring (AQFNSSR), t-Anti Q fuzzy set (t-AQFS), t- Anti Q Fuzzy subsemiring (t-AQFSSR), t-Anti Q Fuzzy normal subsemiring (t-AQFNSSR).

1 Introduction

Using the notation of a fuzzy subset introduced by Zadeh [10], Liu [3] defined fuzzy set and fuzzy ideals of a ring. The notion of fuzzy subgroup was introduced by Rosenfeld [4] in his pioneering paper. Kim [2] studied intuitionistic Q-fuzzy semiprime ideals in semigroups. A Solairaju and R. Nagarajan [9] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. S. Hemalatha, et.al. [1] introduced the concept of Q-fuzzy subring of a ring and established some results. The notion of t-intuitionistic fuzzy subgroups, t-intuitionistic fuzzy quotient group and t-intuitionistic fuzzy subring of a ring have already been introduced by Sharma [5,6,7]. He [8] also introduced the concept of t-anti fuzzy subring and ideals of a ring. In this paper the concept of t-anti Q fuzzy subsemiring(normal subsemiring) and t-anti Q fuzzy ideals of a ring are introduced. Some of its properties are discussed.

2 Preliminaries

Definition 2.1: Let $(R, +, \cdot)$ be a semiring. Let (Q, \cdot) be a non-empty set. A map $A : R \times Q \rightarrow [0, 1]$ is said to be a Q-fuzzy subset (QFS) of R.

Definition 2.2. Let $(R, +, \cdot)$ be a ring and Q be a non-empty set. A Q-fuzzy subset A of R is said to be an Anti Q fuzzy subsemiring (AQFSSR) of R if it satisfies the following conditions:

- (i) $A(x + y, q) \leq \max\{A(x, q), A(y, q)\}$
- (ii) $A(xy, q) \leq \max\{A(x, q), A(y, q)\}$

Definition 2.3. Let $(R, +, \cdot)$ be a ring and Q be a non-empty set. A anti Q-fuzzy subsemiring A of R is said to be an Anti Q fuzzy normal subsemiring (AQFNSSR) of R if $A(xy, q) = A(yx, q)$

Definition 2.4. Let A be a fuzzy set of a ring R. Let $t \in [0, 1]$. Then the fuzzy set A_t of R is called the t-anti fuzzy subset (t-AFS) of R w.r.t. fuzzy set A and is defined as $A_t(x) = \max\{A(x), 1-t\}$, for all $x \in R$.

Definition 2.5. Let A be a fuzzy set of a ring R and $t \in [0, 1]$. Then A is called t-anti fuzzy subring (in short t-AFSR) of R if A_t is fuzzy subring of R i.e. if the following conditions hold.

$$1. A_t(x-y) \leq \max\{A_t(x), A_t(y)\}$$

$$2. A_t(xy) \leq \max\{A_t(x), A_t(y)\}, \text{ for all } x, y \in R.$$

Definition 2.6. Let A_t be a anti fuzzy subring of a ring R and $t \in [0,1]$. Then A is called t - anti fuzzy normal subring (in short t -AFNSR) of R if A_t is fuzzy normal subring of R i.e. if $A_t(xy) = A_t(yx)$.

Definition 2.7:

Let A be a QFS of a ring R . Let $t \in [0,1]$. Then A is called a

(a) Anti Q Fuzzy Left Ideal (AQFLI) of R if

- (i) $A(x+y, q) \leq \max\{A(x, q), A(y, q)\}$
- (ii) $A(xy, q) \leq A(y, q)$, for all $x, y \in R$ and $q \in Q$.

(b) Q Fuzzy Right Ideal (AQFRI) of R if

- (i) $A(x+y, q) \leq \max\{A(x, q), A(y, q)\}$
- (ii) $A(xy, q) \leq A(x, q)$, for all $x, y \in R$ and $q \in Q$.

(c) Q Fuzzy Ideal (AQFI) of R if

- (i) $A(x+y, q) \leq \max\{A(x, q), A(y, q)\}$
- (ii) $A(xy, q) \leq \min\{A(x, q), A(y, q)\}$ for all $x, y \in R$ and $q \in Q$.

Definition 2.8: Let f be a mapping from AQFSSR X to AQFSSR Y . For any fuzzy set B in Y , we define a new fuzzy set denoted as $f^{-1}(B) = B(f(x), q)$ for all $x \in X, q \in Q$. For any fuzzy set A in X , we define $f(A)$ in Y by

$$f(A)(y, q) = \begin{cases} \inf_{x \in f^{-1}(y)} A(x, q), & \text{if } f^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

3. t-Anti QFuzzy Subsemiring

Definition 3.1. Let A be a Q-fuzzy set (QFS) of a ring R . Let $t \in [0,1]$. Then the fuzzy set A_t of R is called the t -Anti QFuzzy subset (t -AQFS) of R with respect to QFS A and is defined as $A_t(x, q) = \max\{A(x, q), 1-t\}$ for all $x \in R$ and $q \in Q$.

Result 3.2. Let A_t and B_t be two t -AQFS of a ring R .

Then $(A \cup B)_t = A_t \cup B_t$.

Proof. Let $x \in R, q \in Q$ be any element, then

$$\begin{aligned} (A \cup B)_t(x, q) &= \max\{(A \cup B)(x, q), 1-t\} = \max\{\max\{A(x, q), B(x, q)\}, 1-t\} \\ &= \max\{\max\{A(x, q), 1-t\}, \max\{B(x, q), 1-t\}\} = \max\{A_t(x, q), B_t(x, q)\} \\ &= (A_t \cup B_t)(x, q) \end{aligned}$$

Hence $(A \cup B)_t = A_t \cup B_t$

Result 3.3. Let $f : X \rightarrow Y$ be a mapping. Let A and B are two QFS of X and Y respectively, then

- i. $f^{-1}(B_t) = (f^{-1}(B))_t$

ii. $f(A_t) = (f(A))_t$, for all $t \in [0,1]$

Proof.

i.
$$f^{-1}(B_t)(x, q) = B_t(f(x), q) = \max\{B(f(x), q), 1-t\} = \max\{f^{-1}(B)(x, q), 1-t\}$$

$$= (f^{-1}(B))_t(x, q)$$

Hence $f^{-1}(B_t) = (f^{-1}(B))_t$

ii.
$$f(A_t)(y, q) = \inf\{A_t(x, q) : (f(x), q) = (y, q)\} = \inf\{\max\{A(x, q), 1-t\} : (f(x), q) = (y, q)\}$$

$$= \max\{\inf\{A(x, q) : (f(x), q) = (y, q)\}, 1-t\} = \max\{f(A)(y, q), 1-t\} = (f(A))_t(y, q)$$

Hence $f(A_t) = (f(A))_t$, for all $t \in [0,1]$.

Definition 3.4. Let $(R, +, \cdot)$ be a ring and Q be a non-empty set. A Q -fuzzy subset A of R is said to be a t -Qanti fuzzy subsemiring (t -QAFSSR) of R if it satisfies the following conditions:

(i) $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$
(ii) $A_t(xy, q) \leq \max\{A_t(x, q), A_t(y, q)\}$, for all $x, y \in R$ and $q \in Q$.

Proposition 3.5: If A is a QAFSSR of a ring R , then A is called t -QAFSSR of R .

Proof. Let $x, y \in R$ and $q \in Q$.

Now $A_t(x + y, q) = \max\{A(x+y, q), 1-t\} \leq \max\{\max\{A(x, q), A(y, q)\}, 1-t\}$
 $\leq \max\{\max\{A(x, q), 1-t\}, \max\{A(y, q), 1-t\}\} \leq \max\{A_t(x, q), A_t(y, q)\}$

Hence $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$

Also $A_t(xy, q) = \max\{A(xy, q), 1-t\} \leq \max\{\max\{A(x, q), A(y, q)\}, 1-t\}$
 $\leq \max\{\max\{A(x, q), 1-t\}, \max\{A(y, q), 1-t\}\} \leq \max\{A_t(x, q), A_t(y, q)\}$

Hence $A_t(xy, q) \leq \max\{A_t(x, q), A_t(y, q)\}$

Thus A is t -QFSSR of R .

Remark 3.6: The converse of the above proposition 3.5 need not be true as the following example shows.

Example 3.7: Consider the Ring $(Z_5, +_4, \cdot_4)$, where $Z_5 = \{0, 1, 2, 3, 4\}$ and $Q = \{q\}$. Define the fuzzy set A of Z_4 by

$$A(x, q) = \begin{cases} 0.3 & \text{if } x = 0 \\ 0.4 & \text{if } x = 1, 3 \\ 0.6 & \text{if } x = 2, 4 \end{cases}$$

Clearly A is not AQFSSR of Z_5 . However, if we take $t = 0.3$, then $A_t(x, q) = 0.7$, for all $x \in Z_5$ and $q \in Q$. Now A is a 0.3-AQFSSR of Z_5 .

Proposition 3.8: Let A be a AQFSSR of the ring R . Let $t \leq 1-p$ where $p = \sup\{A(x, q) : \text{for all } x \in R, q \in Q\}$. Then A is t -AQFSSR of R .

Proof. Since $t \leq 1-p \Rightarrow p \leq 1-t \Rightarrow \sup\{A(x, q) : \text{for all } x \in R, q \in Q\} \leq 1-t \Rightarrow A(x, q) \geq 1-t$ for all $x \in R$, and $q \in Q$. Therefore $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$ and $A_t(xy, q) \leq \max\{A_t(x, q), A_t(y, q)\}$ hold. Hence A is t -AQFSSR of R .

Proposition 3.9: The union of two t -AQFSSR's of R is also t -AQFSSR of R .

Proof. Let A and B be two t -AQFSSR of R . Let $x, y \in R$ and $q \in Q$.

Now $(A \cup B)_t(x + y, q) = (A_t \cup B_t)(x + y, q) = \max\{A_t(x + y, q), B_t(x + y, q)\} \leq \max\{\max\{A_t(x, q), A_t(y, q)\}, \max\{B_t(x, q), B_t(y, q)\}\} = \max\{\max\{A_t(x, q), B_t(x, q)\}, \max\{A_t(y, q), B_t(y, q)\}\} = \max\{(A \cup B)_t(x, q), (A \cup B)_t(y, q)\}$
 Thus $(A \cup B)_t(x + y, q) \leq \max\{(A \cup B)_t(x, q), (A \cup B)_t(y, q)\}$.

Also $(A \cup B)_t(xy, q) = (A_t \cup B_t)(xy, q) = \max\{A_t(xy, q), B_t(xy, q)\} \leq \max\{\max\{A_t(x, q), A_t(y, q)\}, \max\{B_t(x, q), B_t(y, q)\}\} = \max\{\max\{A_t(x, q), B_t(x, q)\}, \max\{A_t(y, q), B_t(y, q)\}\} = \max\{(A \cup B)_t(x, q), (A \cup B)_t(y, q)\}$
 Thus $(A \cup B)_t(xy, q) \leq \max\{(A \cup B)_t(x, q), (A \cup B)_t(y, q)\}$.

Hence $(A \cup B)$ is t -AQFSSR of R .

Proposition 3.10: Let A be AQFNSSR of a ring R , then A is also t -AQFNSSR of R .

Proof. Let $x, y \in R$ and $q \in Q$. Then by above proposition A is t -AQFSSR of R . Now $A_t(xy, q) = \max\{A(xy, q), 1-t\} = \max\{A(yx, q), 1-t\} = A_t(yx, q)$. Hence A is t -AQFNSSR of R .

Definition 3.11:

Let A be a QFS of a ring R . Let $t \in [0, 1]$. Then A is called a

a) t -Anti Q Fuzzy Left Ideal (t -AQFLI) of R if

- (i) $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$
- (ii) $A_t(xy, q) \leq A_t(y, q)$, for all $x, y \in R$ and $q \in Q$.

b) t -Anti Q Fuzzy Right Ideal (t -AQFRI) of R if

- (i) $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$
- (ii) $A_t(xy, q) \leq A_t(x, q)$, for all $x, y \in R$ and $q \in Q$.

c) t -Anti Q Fuzzy Ideal (t -AQFI) of R if

- (i) $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$
- (ii) $A_t(xy, q) \leq \min\{A_t(x, q), A_t(y, q)\}$ for all $x, y \in R$ and $q \in Q$.

Proposition 3.12: If A is AQFLI of a ring R , then A is also t -AQFLI of R .

Proof. Clearly $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$ (From Proposition 3.5)

Now $A_t(xy, q) = \max\{A(xy, q), 1-t\} \leq \max\{A(y, q), 1-t\} = A_t(y, q)$.

Hence A is t -AQFLI of R .

Proposition 3.13: If A is AQFRI of a ring R , then A is also t -AQFRI of R .

Proof. Clearly $A_t(x + y, q) \leq \max\{A_t(x, q), A_t(y, q)\}$ (From Proposition 3.5)

Now $A_t(xy, q) = \max\{A(xy, q), 1-t\} \leq \max\{A(x, q), 1-t\} = A_t(x, q)$.

Hence A is t -AQFRI of R .

Proposition 3.14: If A is AQFI of a ring R , then A is also t -AQFI of R .

Proof. Follows from Proposition 3.12 and Proposition 3.13.

4. Homomorphism of t- Anti Q Fuzzy Subsemiring:

Theorem 4.1: Let $f: R_1 \rightarrow R_2$ be a ring homomorphism from the Ring R_1 into a Ring R_2 . Let B be t-AQFSSR of R_2 . Then $f^{-1}(B)$ is t-AQFSSR of R_1 .

Proof. Let B be a t-AQFSSR of R_2 . Let $x_1, x_2 \in R_1$ and $q \in Q$. Then

$$f^{-1}(B)_t(x_1+x_2, q) = f^{-1}(B_t)(x_1+x_2, q) = B_t(f(x_1+x_2), q) = B_t((f(x_1)+f(x_2)), q) \leq \max\{B_t(f(x_1), q), B_t(f(x_2), q)\} \leq \max\{f^{-1}(B_t)(x_1, q), f^{-1}(B_t)(x_2, q)\}$$

$$\begin{aligned} \text{Now } f^{-1}(B_t)(x_1x_2, q) &= B_t(f(x_1x_2), q) = B_t((f(x_1)f(x_2)), q) \leq \max\{B_t(f(x_1), q), B_t(f(x_2), q)\} \\ &\leq \max\{f^{-1}(B_t)(x_1, q), f^{-1}(B_t)(x_2, q)\} = \max\{f^{-1}(B_t)(x_1, q), f^{-1}(B_t)(x_2, q)\} \end{aligned}$$

Hence $f^{-1}(B)$ is t-QFSSR of R_1 .

Theorem 4.2: Let $f: R_1 \rightarrow R_2$ be a ring homomorphism from the Ring R_1 into a Ring R_2 . Let B be t-AQFNSSR of R_2 . Then $f^{-1}(B)$ is t-AQFNSSR of R_1 .

Proof. Let B be t-AQFNSSR of R_2 . Let $x_1, x_2 \in R_1$ and $q \in Q$.

$$f^{-1}(B)_t(x_1x_2, q) = f^{-1}(B_t)(x_1x_2, q) = B_t(f(x_1x_2), q) = B_t(f(x_1)f(x_2), q) = B_t(f(x_2)f(x_1), q)$$

$$= B_t(f(x_2, q)f(x_1, q)) = B_t(f(x_2x_1), q) = f^{-1}(B_t)(x_2x_1, q) = f^{-1}(B_t)(x_2x_1, q)$$

Hence $f^{-1}(B)$ is t-QFNSSR of R_1 .

Theorem 4.3: Let $f: R_1 \rightarrow R_2$ be a ring homomorphism from the Ring R_1 into a Ring R_2 . Let B be t-AQFLI of R_2 . Then $f^{-1}(B)$ is t-AQFLI of R_1 .

Proof. Let B be t-AQFLI of R_2 . Let $x_1, x_2 \in R_1$ and $q \in Q$.

Clearly $f^{-1}(B_t)(x_1+x_2, q) \leq \max\{f^{-1}(B_t)(x_1, q), f^{-1}(B_t)(x_2, q)\}$ (from theorem 4.1)

$$\text{Now } f^{-1}(B_t)(x_1x_2, q) = B_t(f(x_1x_2), q) = B_t(f(x_1)f(x_2), q) \leq B_t(f(x_2), q) \leq f^{-1}(B_t)(x_2, q)$$

Thus $f^{-1}(B)$ is t-QFLI of R_1 .

Theorem 4.4: Let $f: R_1 \rightarrow R_2$ be a ring homomorphism from the Ring R_1 into a Ring R_2 . Let B be t-AQFRI of R_2 . Then $f^{-1}(B)$ is t-AQFRI of R_1 .

Proof. It is similar to Theorem 4.3.

Theorem 4.5: Let $f: R_1 \rightarrow R_2$ be a ring homomorphism from the Ring R_1 into a Ring R_2 . Let B be t-AQFI of R_2 . Then $f^{-1}(B)$ is t-AQFI of R_1 .

Proof. It can be obtained from Theorem 4.3 and Theorem 4.4.

Theorem 4.6: Let $f: R_1 \rightarrow R_2$ be surjective ring homomorphism and A be t-AQFSSR of R_1 . Then $f(A)$ is t-AQFSSR of R_2 .

Proof. Since A is t-AQFSSR of R_1 . Let $y_1, y_2 \in R_2$ and $q \in Q$. Then there exist some $x_1, x_2 \in R_1$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$.

$$\begin{aligned} f(A_t)(y_1+y_2, q) &= (f(A))_t(y_1+y_2, q) = \max\{f(A)(f(x_1)+f(x_2), q), 1-t\} \\ &= \max\{f(A)(f(x_1+x_2), q), 1-t\} = \max\{A_t(x_1+x_2, q), 1-t\} = A_t(x_1+x_2, q) \\ &\leq \max\{A_t(x_1, q), A_t(x_2, q)\}, \text{ for all } x_1, x_2 \in R_1 \text{ such that } f(x_1) = y_1 \text{ and } f(x_2) = y_2 \\ &\leq \max\{\wedge\{A_t(x_1, q): f(x_1) = y_1\}, \wedge\{A_t(x_2, q): f(x_2) = y_2\}\} = \max\{f(A_t)(y_1, q), f(A_t)(y_2, q)\} \end{aligned}$$

Thus $f(A_t)(y_1+y_2, q) \leq \max\{f(A_t)(y_1, q), f(A_t)(y_2, q)\}$

Now $f(A_t)(y_1y_2, q) = (f(A_t)(y_1y_2, q)) = \max\{f(A_t)(f(x_1)f(x_2), q), 1-t\}$

$= \max\{f(A_t)(f(x_1x_2), q), 1-t\} \leq \max\{A_t(x_1x_2, q), 1-t\} = A_t(x_1x_2, q)$

$\leq \max\{A_t(x_1, q), A_t(x_2, q)\}$, for all $x_1, x_2 \in R_1$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$

$\leq \max\{\Lambda\{A_t(x_1, q) : f(x_1) = y_1\}, \Lambda\{A_t(x_2, q) : f(x_2) = y_2\}\} = \max\{f(A_t)(y_1, q), f(A_t)(y_2, q)\}$

Thus $f(A_t)(y_1y_2, q) \leq \max\{f(A_t)(y_1, q), f(A_t)(y_2, q)\}$

Hence $f(A)$ is t -AQFSSR of R_2 .

Theorem 4.7: Let $f: R_1 \rightarrow R_2$ be surjective ring homomorphism and A be t -AQFNSSR of R_1 . Then $f(A)$ is t -AQFNSSR of R_2 .

Proof. Since A is t -AQFNSSR of R_1 . Let $y_1, y_2 \in R_2$ and $q \in Q$. Then there exist some $x_1, x_2 \in R_1$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Clearly $f(A)$ is t -AQFSSR of R_2 (from Theorem 4.6)

Now $(f(A))_t(y_1y_2, q) = f(A_t)(f(x_1)f(x_2), q) = f(A_t)(f(x_1x_2), q) = \Lambda\{A_t(x_1x_2, q) : f(x_1x_2) = y_1y_2\}$

$= \Lambda\{A_t(x_2x_1, q) : f(x_1x_2) = y_1y_2\} = f(A_t)(f(x_2x_1), q) = f(A_t)(f(x_2)f(x_1), q) = (f(A))_t(y_2y_1, q)$

Hence $f(A)$ is t -AQFNSSR of R_2 .

Theorem 4.8: Let $f: R_1 \rightarrow R_2$ be surjective ring homomorphism and A be t -AQFLI of R_1 . Then $f(A)$ is t -AQFLI of R_2 .

Proof. Since A is t -AQFLI of R_1 . Let $y_1, y_2 \in R_2$ and $q \in Q$. Then there exist some $x_1, x_2 \in R_1$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Clearly $f(A_t)(y_1+y_2, q) \leq \max\{f(A_t)(y_1, q), f(A_t)(y_2, q)\}$ (from Theorem 4.6)

Now $(f(A))_t(y_1y_2, q) = \max\{f(A_t)(f(x_1)f(x_2), q), 1-t\} = \max\{f(A_t)(f(x_1x_2), q), 1-t\}$

$= \max\{A_t(x_1x_2, q), 1-t\} = A_t(x_1x_2, q) \leq A_t(x_2, q) = \max\{A_t(x_2, q), 1-t\} = \max\{f(A_t)(f(x_2), q), 1-t\} = \max\{f(A_t)(y_2, q), 1-t\} = f(A_t)(y_2, q)$.

Thus $(f(A))_t(y_1y_2, q) \leq (f(A))_t(y_2, q)$

Hence $f(A)$ is t -AQFLI of R_2 .

Theorem 4.9: Let $f: R_1 \rightarrow R_2$ be surjective ring homomorphism and A be t -AQFRI of R_1 . Then $f(A)$ is t -AQFRI of R_2 .

Proof. It is similar to Theorem 4.8

Theorem 4.10: Let $f: R_1 \rightarrow R_2$ be surjective ring homomorphism and A be t -AQFI of R_1 . Then $f(A)$ is t -AQFI of R_2 .

Proof. It can be obtained from Theorem 4.8 and Theorem 4.9.

Reference:

1. Hemalatha.S, Naganathan.S and Arjunan.K, *Some theorem on Q-fuzzy subring of a ring*, International Journal of Emerging Technology and Advanced Engineering, 2(12), 2012, pp:581-585.
2. Kim.K.H., *On intuitionistic Q-fuzzy semiprime ideals in semigroups*, Advances in Fuzzy Mathematics, 1(1), 2006, PP:15-21.
3. Liu.W, *Fuzzy Invariant Subgroups And Fuzzy Ideals*, Fuzzy Sets and Systems, 8, 1982, pp:133-139.
4. Rosenfeld.A, *Fuzzy Groups*, Journal of Math, Anal. And Appl., 35, 1971, pp:512-517.
5. Sharma P.K., *t-intuitionistic fuzzy subgroups*, Int. J. Fuzzy Mathematics and Systems, 2(3), 2012, pp:233-243.
6. Sharma P.K., *t-intuitionistic fuzzy quotient group*, Advances in Fuzzy Mathematics, 7(1), 2012, pp:1-9.
7. Sharma P.K., *t-intuitionistic fuzzy subring*, IJMS, 11(3-4), 2012, pp:265-275.
8. Sharma P.K., *t-anti fuzzy subrings and ideals*, Indian Journal of Mathematics Research, 3(1), 2015, pp:47-57.
9. Solairaju.A and Nagarajan.R, *A new structure and construction of Q-fuzzy groups*, Advances in Fuzzy Mathematics, 4(1), 2009, 23-29.
10. Zadeh L.A, *Fuzzy sets*, Information and control, 8, 1965, pp:338-353.