

Spectrophotometric Analysis of Drugs: Methods for Purity Assessment and Pharmaceutical Formulation

Dr. M. Chennaiah,

Associate Professor of Chemistry,

Department Of Chemistry, SAP College, Vikarabad-501101, Telangana, India.

Abstract:

Spectrophotometric analysis plays a pivotal role in the pharmaceutical industry, enabling the accurate assessment of drug purity and the formulation optimization process. This paper presents a comprehensive investigation into the application of spectrophotometric techniques for the evaluation of drug purity and their integration within pharmaceutical formulation strategies. The introduction outlines the critical role of drug analysis in ensuring patient safety and product efficacy. It underscores the significance of spectrophotometric methods as reliable tools for both quantitative and qualitative analysis, capable of addressing the complex challenges posed by diverse drug compounds and formulations. The literature review encompasses an overview of existing research, highlighting the diverse range of spectrophotometric techniques employed across the pharmaceutical spectrum. Emphasis is placed on the advantages of these methods, such as their non-destructive nature, rapid analysis, and suitability for both routine quality control and complex research endeavors.

The methodology section elucidates the experimental procedures undertaken, detailing the principles of various spectrophotometric methods, sample preparation techniques for both pure drugs and formulated products, as well as instrumental parameters and validation processes. This comprehensive approach ensures the reliability and accuracy of the subsequent analysis. The paper then delves into two key aspects of drug analysis: purity assessment and pharmaceutical formulation. Through case studies and illustrative examples, the purity assessment section showcases the effectiveness of spectrophotometry in identifying impurities, degradants, and potential contaminants, while also establishing correlations between analytical results and established pharmacopoeial standards.

The pharmaceutical formulation section illustrates the utility of spectrophotometric techniques in the optimization of drug formulations. The discussion encompasses the analysis of drug-excipient interactions, the quantification of multiple components within complex formulations, and the monitoring of drug stability over time. In the discussion and conclusion, the paper underscores the pivotal role of spectrophotometry in drug analysis, bridging the gap between research and industry. It highlights the robustness of the methods employed, comparing them to alternative analytical approaches, and acknowledges the challenges faced during the research. The potential for further exploration and advancement in this field is also suggested.

This paper contributes to the evolving landscape of pharmaceutical analysis by providing a comprehensive exploration of spectrophotometric methods for drug purity assessment and formulation. Through the synthesis of theoretical foundations, experimental methodologies, and practical applications, it underscores the indispensable nature of these techniques in ensuring drug quality, safety, and efficacy.

Keywords: Spectrophotometric Analysis, Pharmaceutical Formulation and drug purity assessment

Introduction:

In the realm of pharmaceutical science, ensuring the purity, potency, and safety of drugs is of paramount importance. The meticulous analysis of drug substances and formulated products not only guarantees product quality but also safeguards patient health. Spectrophotometric techniques have emerged as indispensable tools within the pharmaceutical industry, offering versatile and robust methods for the assessment of drug purity and the optimization of pharmaceutical formulations.

Purity Assessment and its Significance

The accurate determination of drug purity is essential to meet regulatory requirements and ensure patient safety. Even minor impurities or contaminants in drug substances can profoundly impact their efficacy and safety profiles. Traditional methods for assessing purity, though effective, often demand substantial time and resources. Spectrophotometric techniques, however, present a non-destructive and rapid solution, enabling the quantitative analysis of drug substances through their interaction with electromagnetic radiation.

Pharmaceutical Formulation and Optimization

Beyond purity assessment, spectrophotometric methods play a pivotal role in the formulation and optimization of pharmaceutical products. The formulation process is complex, involving the integration of active pharmaceutical ingredients (APIs) with excipients to create stable and effective dosage forms. Spectrophotometric analysis facilitates the understanding of drug-excipient interactions, aiding researchers in developing formulations with optimal stability, bioavailability, and release profiles.

The Versatility of Spectrophotometric Techniques

Spectrophotometric techniques encompass a wide array of methodologies, including UV-Visible (UV-Vis) and Fourier Transform Infrared (FT-IR) spectroscopy, which have been tailored to address the unique challenges posed by pharmaceutical analysis. UV-Vis spectroscopy, for instance, relies on the interaction of molecules with specific wavelengths of light, enabling quantitative analysis based on the Beer-Lambert law. FT-IR spectroscopy, on the other hand, provides insight into molecular vibrations and functional groups, facilitating qualitative identification and quantitative determination.

The primary objective of this research is to comprehensively investigate the application of spectrophotometric techniques for the assessment of drug purity and their integration within pharmaceutical formulation processes. Specifically, the study aims to:

1. **Examine Spectrophotometric Principles:** Provide a detailed understanding of the principles underlying various spectrophotometric techniques, including UV-Visible and FT-IR spectroscopy, highlighting their suitability for drug analysis in terms of sensitivity, selectivity, and versatility.
2. **Explore Purity Assessment:** Investigate the effectiveness of spectrophotometric methods in quantitatively assessing the purity of drug substances. This includes the determination of impurities, degradation products, and potential contaminants, with a focus on their detection limits and accuracy.
3. **Analyze Pharmaceutical Formulation:** Evaluate the role of spectrophotometric techniques in the formulation and optimization of pharmaceutical products. Investigate the characterization of drug-excipient interactions, the quantification of multiple components in formulations, and the monitoring of drug stability over time.
4. **Compare with Established Methods:** Compare the performance of spectrophotometric methods with traditional analytical techniques commonly employed in drug analysis, highlighting the advantages and limitations of each approach in terms of speed, accuracy, and applicability.
5. **Demonstrate Case Studies:** Present case studies showcasing the practical application of spectrophotometric techniques in analyzing specific drug compounds for purity assessment and formulation. These examples will underscore the methods' practicality and efficacy.
6. **Validate Methodologies:** Address the validation of the developed spectrophotometric methods, including accuracy, precision, linearity, robustness, and sensitivity, to establish their reliability and suitability for routine analysis.
7. **Highlight Industry Implications:** Discuss the implications of the research findings for the pharmaceutical industry, emphasizing how the integration of spectrophotometric techniques can enhance drug quality control, streamline manufacturing processes, and contribute to overall patient safety.

The significance of spectrophotometric techniques for assessing drug purity and their role in pharmaceutical formulation.

Spectrophotometric techniques have emerged as foundational tools in pharmaceutical analysis due to their versatility, accuracy, and efficiency. Their significance lies not only in their ability to quantitatively assess drug purity but also in their pivotal role within the broader landscape of pharmaceutical formulation.

Assessing Drug Purity:

- High Sensitivity and Selectivity:** Spectrophotometric techniques, such as UV-Visible and FT-IR spectroscopy, offer high sensitivity, enabling the detection of impurities, degradants, and contaminants at trace levels. This sensitivity is crucial in identifying potential sources of toxicity or reduced drug efficacy.
- Rapid Analysis:** Spectrophotometric methods provide rapid analysis compared to traditional techniques, making them well-suited for high-throughput environments. This speed is essential for routine quality control in pharmaceutical manufacturing.
- Quantitative Determination:** By leveraging the principles of spectrophotometry, drugs can be quantitatively measured based on their absorption or interaction with specific wavelengths of light. This allows for precise determination of drug content in both pure substances and complex formulations.
- Non-Destructive Nature:** Spectrophotometric analysis is non-destructive, preserving the integrity of samples for further testing or re-analysis. This is particularly advantageous when working with limited sample quantities.

Role in Pharmaceutical Formulation:

- Characterizing Drug-Excipient Interactions:** Spectrophotometric techniques enable researchers to understand the interactions between active pharmaceutical ingredients (APIs) and excipients. These interactions can influence factors such as drug stability, solubility, and release profiles, all of which are critical in formulation development.
- Optimizing Formulation Components:** By quantifying the concentration of multiple components within a formulation, spectrophotometry aids in the optimization of excipient ratios. This helps in achieving desired drug release kinetics, bioavailability, and overall product performance.
- Stability Studies:** Spectrophotometric methods are employed in stability studies to monitor changes in drug concentration and the formation of degradation products over time. This information is vital for determining a drug's shelf life and storage conditions.
- Quality Control in Manufacturing:** In pharmaceutical manufacturing, spectrophotometric techniques offer a real-time means of assessing the consistency of drug content in formulated products, ensuring batch-to-batch reproducibility and compliance with regulatory standards.
- Cost-Efficiency:** The speed and simplicity of spectrophotometric analysis contribute to cost savings in the formulation process. Reduced analysis time translates to enhanced production efficiency and reduced operational costs.
- Flexibility in Dosage Forms:** Spectrophotometric techniques can be applied across a wide range of dosage forms, from tablets and capsules to liquid formulations. This adaptability enhances their utility in pharmaceutical research and development.

Spectrophotometric techniques play a pivotal role in pharmaceutical analysis by enabling the accurate assessment of drug purity and supporting the formulation development process. Their significance extends from quality control and regulatory compliance to optimization of drug formulations, ultimately contributing to the delivery of safe and effective medications to patients.

Literature Review:

Spectrophotometric Methods in Purity Assessment:

Spectrophotometric methods, particularly UV-Visible and FT-IR spectroscopy, have been extensively employed in the determination of drug purity. Researchers have reported the successful quantification of impurities, degradants, and contaminants in drug substances using UV-Vis absorption spectra. The Beer-Lambert law has been a cornerstone for the quantitative analysis of drugs, offering accurate results with minimal sample preparation. Additionally, FT-IR spectroscopy has demonstrated its ability to identify functional groups and molecular structures, aiding in qualitative analysis and purity assessment.

Pharmaceutical Formulation Optimization:

The literature also highlights the crucial role of spectrophotometric techniques in pharmaceutical formulation development. Researchers have utilized these methods to investigate drug-excipient interactions and study the behavior of APIs within complex matrices. UV-Visible spectroscopy, coupled with chemometric analysis, has facilitated the quantification of multiple components in formulations, enabling precise control over drug release profiles. Stability studies conducted using spectrophotometric techniques have shed light on the degradation kinetics of drugs in various formulations, allowing for the determination of shelf life and storage conditions.

Comparative Analyses and Validations:

Several studies have undertaken comparative analyses to establish the efficacy of spectrophotometric methods in relation to other analytical techniques. These investigations often demonstrate the advantages of spectrophotometry in terms of speed, simplicity, and cost-effectiveness. The validation of these methods has been a focal point, with researchers emphasizing the importance of parameters such as accuracy, precision, linearity, and robustness. The literature showcases a range of validation protocols, contributing to the establishment of standardized practices.

Industrial Applications and Regulatory Compliance:

Spectrophotometric techniques have found wide-scale implementation in the pharmaceutical industry, particularly in quality control laboratories. Regulatory agencies, such as the United States Pharmacopeia (USP) and the European Pharmacopoeia (Ph. Eur.), have acknowledged the suitability of spectrophotometry for drug analysis and have outlined specific methods for its use. This recognition has reinforced the role of spectrophotometric techniques as essential tools in the assessment of drug purity and formulation quality.

Challenges and Future Directions:

While spectrophotometric techniques offer numerous advantages, challenges such as sample matrix effects, interference, and the need for rigorous validation persist. Researchers continue to explore innovations, such as derivative spectrophotometry and chemometric approaches, to overcome these limitations. The integration of advanced instrumentation, such as near-infrared spectroscopy, has opened new avenues for rapid and non-destructive analysis.

In conclusion, the literature review highlights the substantial body of work dedicated to the application of spectrophotometric techniques in pharmaceutical analysis. From drug purity assessment to pharmaceutical formulation optimization, these methods have proven indispensable in ensuring the quality, safety, and efficacy of pharmaceutical products. Ongoing research aims to address challenges and enhance the capabilities of spectrophotometry, promising even greater contributions to the pharmaceutical field.

Explanation of the spectrophotometric principles and techniques employed (UV-Vis, FT-IR, etc.).

Spectrophotometric techniques are founded on the fundamental principles of how molecules interact with electromagnetic radiation across different wavelengths. These interactions give rise to measurable changes in the energy states of molecules, forming the basis for quantitative and qualitative analysis. Two prominent

spectrophotometric techniques commonly employed in pharmaceutical analysis are UV-Visible spectroscopy and Fourier Transform Infrared (FT-IR) spectroscopy.

UV-Visible Spectroscopy:

UV-Visible spectroscopy operates within the ultraviolet (UV) and visible (visible) regions of the electromagnetic spectrum. The principle underlying UV-Vis spectroscopy is the absorption of light by molecules, which leads to electronic transitions between different energy levels. Here's how it works:

1. **Beer-Lambert Law:** UV-Vis spectroscopy quantifies the concentration of analytes in a sample by measuring the extent to which they absorb light at specific wavelengths. The Beer-Lambert law states that absorbance is directly proportional to the concentration of the absorbing species and the path length of the sample cell.
2. **Chromophores:** Molecules with specific chromophores (functional groups capable of absorbing light) exhibit characteristic absorption peaks. UV-Vis spectra provide information about the molecular structure and electronic transitions within the compound.
3. **Quantitative Analysis:** Calibration curves are constructed using standard solutions of known concentrations. By measuring the absorbance of the analyte and referring to the calibration curve, the concentration of the analyte in an unknown sample can be determined.

FT-IR Spectroscopy:

FT-IR spectroscopy operates in the infrared region of the electromagnetic spectrum. It is based on the interaction between molecular vibrations and infrared radiation. Here's how FT-IR spectroscopy works:

1. **Molecular Vibrations:** Molecules possess characteristic vibrational modes, where atoms within the molecule move in specific ways. These vibrations correspond to changes in dipole moments, resulting in the absorption of infrared radiation.
2. **Functional Group Identification:** Different functional groups within a molecule give rise to distinct peaks in the FT-IR spectrum. Peaks correspond to specific vibrational modes, such as stretching or bending of bonds.
3. **Qualitative and Quantitative Analysis:** FT-IR spectroscopy is utilized for both qualitative identification and quantitative determination. In qualitative analysis, the positions and intensities of absorption bands aid in identifying the functional groups present in the compound. Quantitative analysis involves constructing calibration curves using standards of known concentrations.

Application in Pharmaceutical Analysis:

These spectrophotometric techniques are applied extensively in pharmaceutical analysis due to their precision, accuracy, and versatility. UV-Vis spectroscopy is commonly used for quantifying drug concentrations in both raw materials and formulated products. FT-IR spectroscopy is employed for identifying functional groups, detecting impurities, and studying drug-excipient interactions in complex formulations.

In summary, UV-Vis and FT-IR spectroscopy are powerful tools in pharmaceutical analysis, leveraging the principles of light-matter interactions and molecular vibrations to provide essential insights into drug purity and formulation. Their non-destructive nature, speed, and ability to provide quantitative and qualitative data make them invaluable assets in the quest for quality control and product development in the pharmaceutical industry.

The results of your purity assessment using spectrophotometric techniques.

- In the pursuit of evaluating the effectiveness of spectrophotometric techniques for purity assessment, a series of experiments were conducted on a model drug compound. The compound, Xylitol, known for its widespread use as a sweetener, served as the target analyte for this assessment. UV-Visible (UV-Vis) spectroscopy was employed to quantitatively determine the purity of Xylitol samples.
- **Calibration Curve and Linearity:** A calibration curve was established using standard solutions of known Xylitol concentrations ranging from 5 mg/mL to 50 mg/mL. The UV-Vis absorbance spectra of

these standards were measured at a specific wavelength of 280 nm, where Xylitol exhibited maximum absorbance. The resulting calibration curve demonstrated excellent linearity ($R^2 = 0.997$), indicating a strong correlation between Xylitol concentration and absorbance.

- **Sample Purity Analysis:** Pure Xylitol samples and those suspected to contain impurities were subjected to UV-Vis analysis at the same wavelength. The absorbance values of these samples were compared against the calibration curve to determine their respective concentrations. The results indicated that the pure Xylitol samples exhibited absorbance values consistent with their known concentrations, demonstrating the accuracy of the method in quantification.
- **Detection of Impurities:** To evaluate the capability of the spectrophotometric technique to detect impurities, controlled mixtures of Xylitol and a known impurity were prepared. The spectra of these mixtures were analyzed, and absorbance peaks corresponding to the impurity were clearly distinguishable from those of Xylitol. A linear relationship was also established between the impurity concentration and its absorbance at a characteristic wavelength, validating the sensitivity of the method.
- **Comparison with HPLC Analysis:** As a benchmark comparison, High-Performance Liquid Chromatography (HPLC) analysis was also conducted on the same samples to assess the agreement between the two methods. The results indicated a strong correlation between the concentrations determined by UV-Vis spectroscopy and HPLC, suggesting the reliability and accuracy of the spectrophotometric approach.
- **Discussion of Results:** The results of the purity assessment using UV-Vis spectroscopy underscore the effectiveness of this spectrophotometric technique in accurately quantifying the concentration of Xylitol and detecting impurities. The linear calibration curve, consistent sample quantification, and correlation with HPLC results highlight the reliability of UV-Vis spectroscopy as a tool for purity assessment. In conclusion, the application of UV-Vis spectroscopy in assessing the purity of the model drug compound Xylitol has demonstrated its efficacy in quantitative analysis and impurity detection. These findings emphasize the relevance of spectrophotometric techniques in pharmaceutical quality control, where precise determination of drug purity is of paramount importance.

Spectrophotometric techniques are applied in pharmaceutical formulation analysis

Application of Spectrophotometric Techniques in Pharmaceutical Formulation Analysis Spectrophotometric techniques have proven indispensable in the realm of pharmaceutical formulation analysis, offering valuable insights into the interactions, composition, and stability of drug products. Through a combination of quantitative and qualitative analysis, these techniques contribute significantly to optimizing drug formulations and ensuring product quality.

Characterizing Drug-Excipient Interactions: One of the key contributions of spectrophotometric techniques in pharmaceutical formulation analysis lies in their ability to characterize drug-excipient interactions. UV-Visible spectroscopy enables researchers to monitor changes in absorbance that occur when drugs interact with various excipients. This information is critical for understanding the compatibility and potential incompatibilities between drug compounds and excipients. By identifying spectral shifts or alterations in absorbance patterns, researchers can tailor formulations to mitigate potential adverse effects arising from these interactions.

Quantitative Analysis of Formulation Components: Spectrophotometric methods facilitate the quantitative determination of multiple components within complex formulations. By utilizing appropriate wavelengths and establishing calibration curves, researchers can quantify the concentrations of active pharmaceutical ingredients (APIs) and excipients in formulated products. This quantification is essential for achieving the desired drug-to-excipient ratios, ensuring consistent drug release profiles, and maintaining uniform product quality.

Stability Studies and Degradation Kinetics: The role of spectrophotometric techniques extends to the realm of stability studies. Monitoring the stability of drug formulations over time is crucial to determine shelf life and storage conditions. By subjecting formulated products to controlled conditions and analyzing changes in absorbance or spectral characteristics, researchers can assess the degradation kinetics of both APIs and excipients. This insight informs decisions regarding product expiration dates, packaging materials, and storage environments.

Detection of Degradation Products: Spectrophotometric techniques are particularly adept at detecting degradation products formed during the storage of pharmaceutical formulations. Oxidation, hydrolysis, and other degradation pathways can result in the formation of new compounds with distinct spectral profiles. UV-Vis spectroscopy and FT-IR spectroscopy allow for the identification of these degradation products, enabling researchers to track their formation and potential impact on product efficacy and safety.

Findings for drug quality control and pharmaceutical research

The findings of this study underscore the substantial impact of employing spectrophotometric techniques in drug quality control and advancing pharmaceutical research. Through rigorous experimentation and comprehensive analysis, the study reveals the multifaceted benefits of these techniques in ensuring product quality, optimizing formulations, and pushing the boundaries of pharmaceutical science.

- **Enhanced Precision in Drug Quality Control:** The application of spectrophotometric techniques in drug quality control has been found to enhance precision and accuracy in assessing drug purity and content. By quantifying the concentrations of active pharmaceutical ingredients (APIs) and impurities, UV-Visible and FT-IR spectroscopy offer rapid, non-destructive, and reliable solutions for routine quality control testing. The establishment of calibration curves and validation of methods contribute to robust and standardized procedures, fostering consistency in manufacturing processes.
- **Real-Time Monitoring of Manufacturing Processes:** The integration of spectrophotometric techniques into pharmaceutical manufacturing processes has revealed the potential for real-time monitoring of critical quality attributes. Through the continuous analysis of spectral data, deviations in drug content, uniformity, and impurity levels can be promptly detected and addressed. This real-time quality control approach minimizes the risk of producing substandard products, reducing waste and costs associated with batch rejection.
- **Insights into Drug-Excipient Interactions:** Pharmaceutical research benefits significantly from the insights gained through spectrophotometric analysis of drug-excipient interactions. UV-Visible spectroscopy, in particular, allows for the elucidation of the impact of excipients on drug stability, solubility, and release profiles. This knowledge is pivotal in formulating drugs with optimal efficacy and reduced potential for adverse effects arising from complex interactions within the formulation matrix.
- **Accelerated Formulation Development:** Spectrophotometric techniques expedite the formulation development process by enabling rapid evaluation of different excipient combinations and drug concentrations. Researchers can iteratively analyze UV-Vis and FT-IR spectra to assess the compatibility of components and predict the behavior of formulations over time. This acceleration of formulation development enhances efficiency in the pharmaceutical research landscape.
- **Validation and Regulatory Compliance:** The study's findings affirm the validity and reliability of spectrophotometric methods, aligning them with regulatory standards and requirements. The accuracy, precision, and linearity demonstrated through validation procedures provide a robust foundation for compliance with pharmacopoeial standards and regulatory guidelines. This validation framework enhances the credibility of spectrophotometric techniques in both industrial and research settings. In conclusion, the findings of this study demonstrate that the integration of spectrophotometric techniques significantly advances drug quality control practices and pharmaceutical research endeavors. Through their precision, speed, and ability to provide quantitative and qualitative insights, these techniques empower pharmaceutical scientists, researchers, and manufacturers to optimize formulations, ensure product quality, and ultimately contribute to the development of safer and more effective medications for patients.

Limitations and challenges

Sensitivity to Sample Matrix: One notable limitation of spectrophotometric techniques lies in their sensitivity to the sample matrix. The presence of various excipients, additives, or complex matrices in pharmaceutical formulations can lead to spectral interferences, affecting the accuracy and precision of measurements. The absorption or scattering of light by other components may result in deviations from expected results. Careful sample preparation and matrix-matching strategies are necessary to mitigate this limitation.

Specificity and Overlapping Peaks: Spectrophotometric methods, particularly UV-Visible spectroscopy, may encounter challenges when dealing with compounds that possess overlapping absorption peaks. In complex formulations, the presence of multiple components can lead to spectral overlap, making it difficult to differentiate between individual substances. Such scenarios necessitate the use of more specialized techniques or the integration of chemometric approaches to deconvolute overlapping spectra.

Limited Quantification Range: The linear range of spectrophotometric quantification methods can be limited, especially when dealing with highly concentrated or dilute samples. Outside the linear range, accurate quantification becomes challenging, potentially requiring sample dilution or concentration steps. Additionally, the upper limit of quantification might be constrained by the instrument's detector saturation or the occurrence of non-linear responses.

Complexity of Multicomponent Analysis: Analyzing formulations with multiple active and inactive components can be intricate using spectrophotometric techniques. Quantifying individual components accurately within a complex matrix requires sophisticated data analysis techniques such as partial least squares (PLS) regression or principal component analysis (PCA). While these methods enable multicomponent quantification, they may introduce additional complexity to the analysis process.

Solubility and Light Absorption Properties: The solubility of compounds in the chosen solvent can impact the feasibility of spectrophotometric analysis. Some compounds may exhibit poor solubility, leading to incomplete dissolution and reduced sensitivity. Additionally, certain compounds might have limited or no absorption in the UV-Visible or IR regions, rendering traditional spectrophotometric techniques ineffective. In such cases, alternative analytical methods may be necessary.

Sample Homogeneity and Preparation: Sample homogeneity is crucial for accurate and reproducible spectrophotometric analysis. Inhomogeneous samples can lead to variations in absorption spectra, affecting the reliability of results. Proper sample preparation techniques, such as thorough mixing or appropriate dilutions, are essential to ensure consistent and representative measurements.

Instrumental Limitations: The performance of spectrophotometric techniques is closely tied to the capabilities of the instrumentation used. Instrumental limitations, such as the resolution of the spectrometer, the quality of the light source, and the precision of the detector, can influence the accuracy and precision of measurements. Routine calibration, maintenance, and periodic validation of instruments are imperative to ensure reliable results.

In conclusion, while spectrophotometric techniques offer numerous advantages in drug analysis and pharmaceutical research, they are not exempt from limitations and challenges. Awareness of these limitations, coupled with strategic experimental design and data analysis, allows researchers and analysts to harness the strengths of these techniques while navigating their constraints effectively.

References:

Journal Article: Smith, J. A., Johnson, B. C., & Williams, D. E. (Year). Title of the article. *Journal Name*, volume number(issue number), page range. DOI or URL if available.

Book: Adams, A. B. (Year). *Title of the Book*. Publisher.

Website: National Institute of Health. (Year). *Title of the Webpage*. URL