
© 2018 IJRAR January 2019, Volume 06, Issue 1              www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRAR19J1331 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 236 
 

Laplacian Centrality  in Transportation Network 
 

Tulsi  Bora1 ,  Arun  Kumar  Baruah2 

Asstt. Professor1 ,  Professor2 

Deptt. of Mathematics ,CNB College, Bokakhat1.    Deptt. of Mathematics, Dibrugarh University2 

ABSTRACT  

The centrality of vertices has been a key issue in network analysis. In this work we propose a centrality 

measure for networks, which we refer to as Laplacian centrality, that provides a general framework for the 

centrality of a vertex. This centrality based on the idea that the importance of centrality of a vertex is related 

to the ability of the network to respond to the deactivation or removal of that vertex from the network. In 

particular, the Laplacian centrality of a vertex is defined as the relative drop of Laplacian energy caused by 

the deactivation of this vertex. The Laplacian energy of network G with n vertices is defined as  EL(G) = 

∑ 𝜆𝑖
2𝑛

𝑖=1     where λi is the eigenvalue of the Laplacian matrix of G. That is, compared to other standard 

centrality measures. Laplacian centrality is an intermediate measuring between global and local 

characterization of the importance  of centrality of a vertex. We further investigate the validness and 

robustness of the Laplacian centrality measure by illustrating this method to transportation network data sets 

and obtain reliable results, which provide strong evidences of the measure’s utility. 
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 1. Introduction  

The use of Social Network Analysis (SNA) to understand complex network  demonstrates the importance of 

the implicit connections within groups that arise from day to day social activity. Now a days it is the most 

important to observing, detecting and analyzing transportation networks  in understanding who is central to 

the functionality of these groups that form around the common goal of engaging in transportation activities. 

As a result, for both academic and practical reasons ,researchers and analysts from several areas have a 

highly interest in understanding the centrality within networks. 

SNA provides us tools for mapping and measuring relationships and flows between people, groups, 

organizations, computers, and many other connected bits of information/knowledge. The vertices in the 

network represent people and groups while the edges show relationships, connections, or flows between the 

vertices. SNA provides both a visual and a mathematical analysis of these interrelationships. Recent studies 

of networks in political science range from such diverse topics as international conflict [1], terrorism [2] and 

policy networks [3] to disciplinary introspection about job placement in political science [4].  

  To understand network structure, we  evaluated of their location relative to all other actors in the 

network. For networks, the most readily examined measure of location means how close is the object to the 

center, or centrality. Finding the important vertices with high centralities in order to characterize the 

properties of the networks has significant uses in many fields. These include synchronization transition, the 

spread of epidemics, and the transmission of information. For example, in diffusive systems the vertices 

with large degree play a crucial role, which are decisive in resolving the traffic jam at a bottleneck [5]. 

Jackson[6] analyzed the different aspects of the positioning of the nodes with the help of different 

centralities. The degree method has an advantage and disadvantage also. It is calculated only the local 

structure around a vertex. A vertex is connected to many other vertices , it might not be in a position to 

reach others quickly to access  information or flow[7]. If the network consists of more than two 

communities ,the nodes in the smaller community would exhibit lower “subgraph” centrality ranks. So, if 

species to community relation are to be known in food web[8,9] an intermediate characterization of vertex 

centrality has been claimed as a necessity for the study. 

The centrality of vertices, or the identification of vertices which are more ‘‘central’’ than others, has 

been a key issue in network analysis. Various centrality measurements are used viz. degree centrality, 

closeness centrality, betweenness centrality, eigenvector centrality and subgroup centrality. 

In this paper, we propose a new centrality strategy for transportation networks, which permits one to 

consider more ‘‘intermediate’’ environmental information around a vertex is called ‘‘Laplacian centrality 

method’’ because it is from the use of a matrix valued function that describes the so-called ‘‘Laplacian 
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energy’’ of the network. The basic idea is that the importance of centrality of a vertex is related to the ability 

of the network to respond to the deactivation of the vertex from the network. In particular, the relative drop 

of Laplacian energy in the network caused by the deactivation of this vertex from the network will be used 

as the indicator to show its importance in the network. We further investigate the validity and robustness of 

this new measure by applying this method to some classical data sets of social networks. Successful 

applications on those bench mark data sets are evidences of the utility of this proposed centrality 

measurement.  

This paper is organized as follows. In Section 2, we give some useful graph theory notations and 

terminology. In Section 3, we present the definition of  Laplacian centrality. In Section 4, we give a theorem 

to show a structural description of the Laplacian centrality. Analytical and numerical results based on 

various centrality measures applying on Dispur Transportation Network in Section 5. In section 6 and 7, we 

focus the analysis and results of the proposed Network. Conclusions are made in Section 8. 

 

2. Graph Theory Notation and Terminology 

 

Social network usually represented as a graph. The vertices are the individuals, and the edges represent the 

social links. In this paper, we consider the symmetric case where transportation  networks are represented 

by undirected graphs. Multiple edges are two or more edges connecting the same two vertices. Graphs with 

multiple edges are called multigraph. A degenerate edge of a graph which joins a vertex to itself, is called a 

loop. The number of edges that are incident to a vertex is called the degree of the vertex. The neighborhood 

of a vertex v is the set of all vertices adjacent to v. Graph entropy measures are always used for determining 

the structural information content of graphs, which has been proved to play an important role in a variety of 

problem areas, including biology, chemistry, and sociology [4]. Laplacian energy, which could be thought 

as one kind of graph entropy, representing a certain coherent measuring of a network, is used here to 

measure the importance of centrality of a vertex by the relative drop of Laplacian energy in the network 

caused by the deactivation of this vertex from the network. In Section 3, we will introduce the definition of 

Laplacian energy of a network and Laplacian centrality of a vertex. 

 

Let G be an undirected graph, consisting of a set of  n vertices V(G)= {v1, v2, …,vn} and a set of m edges. 

The number of edges that are incident to a vertex is called the degree of the vertex. Let A(G) = (ai ,j)nxn be 

the adjacency matrix of the graph G, where the element ai ,j equals 1 if there is an edge between vertices i 

and j , and 0 if there is not. 

 

3. Laplacian Centrality 

 

In the following, we will first introduce the definition of Laplacian matrix and Laplacian energy for a graph, 

then define the Laplacian centrality for a vertex.  

Let G be a simple graph  without graph loops or multiple edges of vertices, and 

 

D(G) = diag(d1 ,d2 ,…,dn) = (
𝑑1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑𝑛

) 

be the diagonal matrix with the vertex degrees d1 , d2 , ...,dn of its vertices v1 , v2 , … vn. Define  

L(G) = D(G) – A(G) as the Laplacian matrix of the graph G. 

 

Definition 1 If G is a graph of  n  vertices, and λ1 ,λ2 ,…λn are the eigenvalues of its Laplacian matrix. The 

Laplacian energy of  G is defined as the following invariant:  

EL(G) = ∑ 𝜆𝑖
2𝑛

𝑖=1  

 

Lemma 1 [10] For any graph G on vertices with vertex degrees d1, d2, … dn, we have  

 

𝐸𝐿(𝐺) =  ∑(𝑑𝑖
2 + 𝑑𝑖

𝑛

𝑖=1

) 

Lemma 2 [10] If H is an arbitrary subgraph of a graph G, then EL(H)≤ EL(G). 

 

Definition 2 If  G is a graph on n  vertices{v1, v2, …,vn} .  Let H be the graph obtained by removing vertex    
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vi from G . The Laplacian centrality Ci
L of vertex vi is defined as 

 

Ci
L = (∆𝐸)i =  EL(G) – EL(H) 

4. Calculation of Laplacian Centrality, a Graph Theory Result  

4.1. Graph Theoretical Descriptions  

Theorem 1 [11] If  G is a graph of  n vertices, then the Laplacian centrality with respect to v is  

 

𝐶𝑣
𝐿 = ( ∆𝐸)𝑣 =  𝑑𝐺

2 ( 𝑣) +  𝑑𝐺( 𝑣) +  2 ∑ 𝑑𝐺(𝑣𝑖

𝑣𝑗𝜖 𝑁(𝑣)

) 

where N(v)  is the set of neighbors of v  in G and  dG(vi) is the degree  of vi  in G. 

From Theorem 1, we notice the following facts:  

Firstly, the Laplacian centrality agrees with the standard measures on assignment of extremes. For example, 

it gives the maximum value to the central vertex of a star, and equal value to the vertices of a cycle or a 

complete graph.  

Secondly, we know that the degree centrality is the number of vertices which can be reachable from v 

directly. The Laplacian centrality of a vertex involves the information of vertices that can be reachable to v 

within two steps and as a result the Laplacian centrality of a vertex takes not only the local environment 

around it into account but also the larger immediate environment around its neighbors. Therefore it is an 

intermediate measure between global and local characterizations of the position of a vertex within networks. 

Because of this we should anticipate that it will reveal differences in network structure that emerge out of 

significant local influence upon areas of the graph.  

4.2. Comparison with Local and Global Centrality Methods  

In this section, we will give a simple  example  to show the differences between degree method and  

Laplacian methods with the popular existing centrality measures respectively.  

Please see Figure 1, based on degree centrality,  node no. 3 has higher ranking than  node no. 15  because 

the degree of node no. 3  is 4 while the degree of node no. 15 is 3.   

But based on Laplacian method, would have higher ranking than because  

 

( ∆𝐸)3 =  𝑑𝐺
2 ( 3) + 𝑑𝐺( 3) +  2 ∑ 𝑑𝐺(𝑣𝑖𝑣𝑗𝜖 𝑁(𝑣) ) =  36 

 

       ( ∆𝐸)15 =  𝑑𝐺
2 ( 15) +  𝑑𝐺( 15) +  2 ∑ 𝑑𝐺(𝑣𝑖𝑣𝑗𝜖 𝑁(𝑣) ) =  42 

 
Figure 1. Example  for comparison of degree centrality and Laplacian centrality method. 
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5. Application and Experimental Results 

 

Dispur is the largest city in Assam and one of the fastest developing cities in India. With the rapid growth of 

population in the city, the road traffic problems are also increasing at an alarming rate. The development of 

a city or town leads to the growth of the number of vehicles which is directly linked to increased traffic 

congestion and a growing number of accidents and fatalities. Road traffic problems like congestion, 

unpredictable travel-time delays and road accidents are taking a serious shape in the city. The main 

objective of this study is to analyze the potential of bridging centrality on transportation network ,viz. 

Dispur city map. It is a well planned city and capital of Assam. We  take 35 major bus stoppages of this 

Dispur area to analyze the bridging nodes .  

 

 
 

Figure 2. Major bus stoppage of Dispur city. 

The information provided by the four standard centrality measures and our Laplacian centrality measure as 

applied to the 35 major bus stoppages of the transportation network directly involved in the operation are 

provided in Table 1, where the centrality scores are normalized which is dividing by the highest score of 

each method. We also list the rank for each stoppages. Note that frequently actors will exhibit the same 

scores for a number of measures. In the case when ties occur, we usually assign them the same rank. 

 

 

 

 

 

 

6.  Consensus Rank  

In this research project, we used the similar ideas and principles of consensus applied in bioinformation in 

the ranking study of social networks. The consensus ranks are calculated as follows. At first, for each 

stoppages, we calculate the mean of its five ranks from various methods. For example, Ganeshguri gets 

ranks {1,6,7,2,2} from five centrality methods respectively, thus its mean of rank is 3.6 (a fractional 

number); secondly, we sort the mean values of these 35 stoppages from smallest to largest, the output of 

order is defined as the consensus rank of these 35 stoppages. Note that when ties happen (i.e., more than one 

stoppages have the same mean value) we follows the same criterion as used in finding the rank in 

transportation network. We list the consensus rank of these 35 stoppages at the last column of Table 1. 
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1 khanapra 0.25 0 0.450002 0.136364 0.063705 31 30 34 32 34 34 

2 Research Gate 0.5 0.130953 0.510123 0.272727 0.118036 8 22 31 27 31 29 

3 Garm gate 0.5 0.253968 0.583332 0.318182 0.164833 8 13 28 20 27 25 

4 Dairy gate 0.5 0.369047 0.673797 0.318182 0.228099 8 11 23 20 23 22 

5 Training Center 0.5 0.476191 0.787501 0.409091 0.362492 8 8 13 11 14 9 

6 six mile 1 0.94246 0.933335 0.818182 0.670963 1 2 4 3 4 2 

7 Rukmini gaon 0.5 0.101432 0.834439 0.409091 0.393571 8 28 9 11 12 15 

8 PIBCO 0.5 0.103175 0.840002 0.318182 0.340618 8 27 8 20 17 17 

9 Down town hospital 0.5 0.126984 0.875 0.409091 0.500455 8 26 6 11 7 10 

10 Super market 1 1 1 1 1 1 1 1 1 1 1 

11 Ganeshguri 1 0.505953 0.857146 0.863636 0.799774 1 6 7 2 2 4 

12 Statefed 0.5 0.130953 0.707865 0.363636 0.358477 8 22 21 15 15 18 

13 

International 

Hospital 0.25 0 0.597155 0.136364 0.139676 31 30 27 32 30 32 

14 Houshing colony 0.25 0 0.605772 0.181818 0.164855 31 30 26 31 26 31 

15 Public Health 0.75 0.168652 0.720002 0.5 0.414082 4 21 19 7 11 12 

16 forest gate 0.5 0.192461 0.818182 0.409091 0.435126 8 20 11 11 9 11 

17 Hengerabari 0.75 0.781747 0.992197 0.636364 0.733594 4 3 2 4 3 3 

18 Borbari 0.5 0.65873 0.954547 0.454545 0.531636 8 5 3 8 6 6 

19 Gymkhana club 0.5 0.476191 0.77778 0.363636 0.34052 8 8 14 15 18 13 

20 Jatiya 0.5 0.369047 0.666667 0.318182 0.216572 8 11 24 20 24 23 

21 DHE 0.5 0.253968 0.577981 318182 0.160261 8 13 29 20 28 26 

22 SB 0.5 0.130953 0.506024 0.272727 0.116606 8 22 32 27 32 30 

23 Forensic 0.25 0 0.446808 0.136364 0.063355 31 30 35 32 35 35 

24 Last gate 0.75 0.779761 0.919708 0.636364 0.642732 4 4 5 5 5 5 

25 Housefed 0.5 0.291666 0.812905 0.363636 0.345265 8 13 12 15 16 14 

26 Wireless 0.5 0.242063 0.750001 0.318182 0.234753 8 17 16 20 22 21 

27 Houshing 0.5 0.218253 0.724138 0.318182 0.216392 8 18 17 20 25 24 

28 Survey 0.5 0.214286 0.720002 0.363636 0.26277 8 19 19 15 20 18 

29 Beltola Tiniali 0.75 0.498016 0.759036 0.545455 0.392106 4 7 15 6 13 7 

30 AG 0.5 0.253968 0.646155 0.363636 0.238058 8 13 25 15 21 20 

31 Basistha Chariali 0.5 0.130953 0.557521 0.272727 0.146074 8 22 30 27 29 28 

32 

Brahmaputra board 

HQ 0.25 0 0.486486 0.136364 0.072265 31 30 33 32 33 33 

33 Jayanagar 0.5 0.430556 0.823529 0.454545 0.427158 8 10 10 8 10 8 

34 Romo's restaurent 0.25 0 0.700001 0.227273 0.299941 8 30 22 30 19 27 

35 Anandaram LPS 0.5 0.087302 0.724138 0.454545 0.464796 8 29 17 8 8 16 

 

Table 1. The centrality scores based on five methods for 35 vertices in Dispur Network; their ranks and consensus rank in all 35 

vertices. 
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7.  Deviation of Each Method from Consensus Result  

To further analyze, we use the following “deviation” score to numerically evaluate the distance from the 

output based on each centrality method to the consensus rank:  

 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐶) =  ∑ (𝑟𝑎𝑛𝑘𝐶35
𝑖=1 (𝑖) −  𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑖))2 

 

where 𝑟𝑎𝑛𝑘𝐶(𝑖) is the rank of i-th stoppages based on centrality measurement C ( C 𝟄 {Laplacian, degree, 

closeness, betweenness, eigenvector centrality}), and 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑖)  is the consensus rank of i-th stoppage.  

Clearly, the smaller the deviation, the better is the output. A method with the smallest deviation is 

regarded as the one with “the best fit”. The deviations for all centrality methods are presented at the last two 

rows of Table 2, which shows that Laplacian method has the smallest deviation. That is, Laplacian 

centrality method has the best fit to the consensus ranking results, which is a further evidence of its 

effectiveness and reliability to identify major players in social network.  

 

Deviation 

Degree Betweenness Closeness Laplacian Eigen vector 

3877 1802 511 306 317 

 
Table 2. Deviation of five centrality methods of all 35 vertices. 

8. Concluding Remarks 

In this final section, we survey some properties of the new method which is balanced global/local 

measurement qualities, its accuracy and effectiveness, efficiency, and its future applications. The review is 

conducted from several different angles viz.  graph structure, verification of known facts from experimental 

testing, and the consensus for comparison.  

From the graph theoretical point of view, graph centrality measurements can be roughly classified as two 

types: local or global. Degree centrality is a typical example of local measurement  which is consider the 

information of the number of vertices that are reachable from directly, while betweeness, closeness and 

eigenvector, are more global. Laplacian centrality reveals more connection information beyond its 

immediate surrounding neighborhood, thus serves as an intermediate between global and local 

characterizations.  

Centrality measurement based on shortest path calculations such as, betweeness, closeness, etc. are powerful 

tools for the detection of bottlenecks in networks the cut-vertices of connected graphs. Consequently, these 

types of vertices are scored more favorably if global connectivity is relatively low. In these lower 

connectivity examples, Laplacian centrality will provide a more balanced measurement, which takes both 

bottleneck information and local density information into account. As we discussed above, from a graph 

theoretical point of view different methods reveal different measurements of importance due to their 

different structural emphasis. Applying the new method in this transportation network  the Laplacian 

method provides a better performance as a network analysis tool. This is supported by two different 

approaches: confirmation of analyses based on known intelligence information, and consensus comparison, 

where the study shows that the Laplacian method has the smallest deviation from the consensus result, 

providing additional evaluation of the reliability of Laplacian centrality. 
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