

“Book-verse” Book Recommendation System

¹ Vignesh Kumar, ² Shameera, ³ A. Revathi

¹BCA (AI), ² BCA (AI), ³ Assistant professor

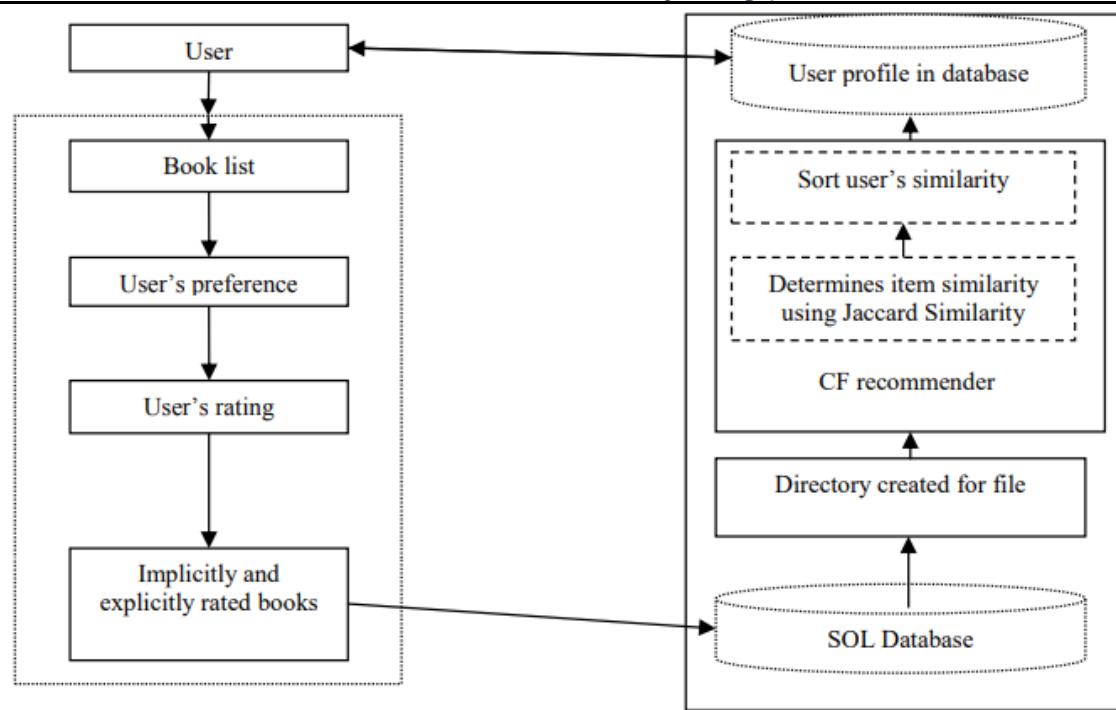
¹School of Computer Science,

¹Rathinam College of Arts and Science, Coimbatore, India

Abstract : Book recommendation systems are becoming increasingly important in the context of growing library holdings since users' need for rapid book discovery is driving this trend. This work builds on previous research by introducing a unique recommendation method that combines interest measures such as search frequency, borrowing length, frequency, intervals, and renewal rates, with collaborative filtering. After extensive testing using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) analysis, the suggested method shows faster convergence than the conventional methods. Furthermore, this work tackles the drawbacks of traditional collaborative filtering techniques by putting forward a hybrid approach using Jaccard Similarity (JS). This is particularly relevant in the larger context of e-commerce, where Recommendation Systems (RS) are crucial in influencing customer decisions.

The system claims to provide more accurate suggestions by using JS to measure the similarity between book pairings based on user ratings. Books with higher JS indices a sign of more user overlap in ratings—are given preference in the recommendation list, improving the accuracy and pertinence of the reading recommendations.

IndexTerms - Book recommendation systems, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Recommendation Systems (RS), Accuracy of suggestions, Reading recommendations.


I. INTRODUCTION

The huge amount of information on the Internet in the modern era has made it difficult to identify relevant content, which has led to the general use of recommendation algorithms on a variety of platforms. By delivering customized recommendations based on user profiles, browsing histories, and online habits, these systems improve user experience and increase revenue. This work proposes a unique technique that combines collaborative filtering with interest measures including search frequency, borrowing length, and renewal rates, with an emphasis on using recommendation systems for book suggestions. The research illustrates the effectiveness of the suggested strategy in producing precise book suggestions through an examination of relevant literature and thorough execution. Combining interest measurements with collaborative filtering, the system enhances user satisfaction and suggestion accuracy.

The study ends with recommendations for further reading, experimental findings, and factors influencing book recommendations.

II. PROPOSED SYSTEM

Even with their great potential, existing recommendation services still require a robust user profile and history. Users sign up for these platforms, peruse the books, give them ratings, comment on them, suggest them to others, share, read relevant content, and so on. A system generates suggestions based on this kind of data. These services include lazylibrary.com, whatshouldireadnext.com, whichbook.net, and others. Rather, our recommender system prioritizes speed and ease of use. After registering, the user is prompted to choose ten of their favorite books from a minimum of three categories (genres). The system generates suggestions based on this data. The user may also keep rating the books, purchase them, and add them to their reading list, all of which will help to raise the standard of suggestions. Fig. 1 shows the overview of the system. A user modifies a database by giving the book's ratings and using an easy-to-use search and filtering interface. Then get the proper advice. The collaborative filtering process is then used to calculate the suggestions.

Fig. 1 Architecture of proposed system

A. Data Collection

A recommendation system's data volume is a key component. Suggestions cannot be accurate unless sufficient data is provided. We decided to gather data from already-existing sources for that reason. The primary target audience for our www.readly.ru, a website that offers tens of thousands of books across numerous genres. The data was gathered using Scrappy technology. A unique framework called Scrappy is used to explore websites without APIs and collect data from them. This library operates on a very basic basis. The data that has to be scraped must first be defined. Next, a spider must be written to parse the data and run. We collected data and stored it in the MySQL database. The number of books is about 25.000 popular books.

B. Learning about User Preferences

The system distinguishes between two user types: registered users and guests. Visitors can look up the right book, read descriptions, and view ratings. On the other hand, people who have registered can score products and view the system's recommendations.

Initially, when registering, a user was requested to select three or more genres that they were most interested in (refer to Fig. 2), and to rate at least ten books to determine their preferences. An easy-to-use search box with a variety of search options and a category listing is offered to help users locate their favorite books fast (see Fig. 3).

In our work, we choose to generate the recommendations by collaborative filtering. By gathering a great deal of data about customers' tastes, collaborative filtering is a method for recommending various products to them. As previously stated, the concept behind collaborative filtering is that, as opposed to partnering with a random user, if two users share the same preferences for a given item (see Fig. 2), it is more likely that they will also share the same opinions for other items. There are various realizations from collaborative filtering. Among them is based on neighborhood-based algorithms for computation similarity between two items. In our pro similarity by using Pearson correlation function:

$$r = \frac{\sum XY - \frac{\sum X \times \sum Y}{N}}{\sqrt{(\sum X^2 - \frac{(\sum X)^2}{N}) - (\sum Y^2 - \frac{(\sum Y)^2}{N})}} \quad (1)$$

Similarity r between two users X and Y can have values between 1 and -1 where 1 means two users are similar and -1 vice versa.

C. Providing Suggestions

The algorithm offers suggestions after figuring out user preferences (see Fig. 4). Recommendations might be viewed as a straightforward list or as genre-specific lists.

III. SCREEN SHOTS

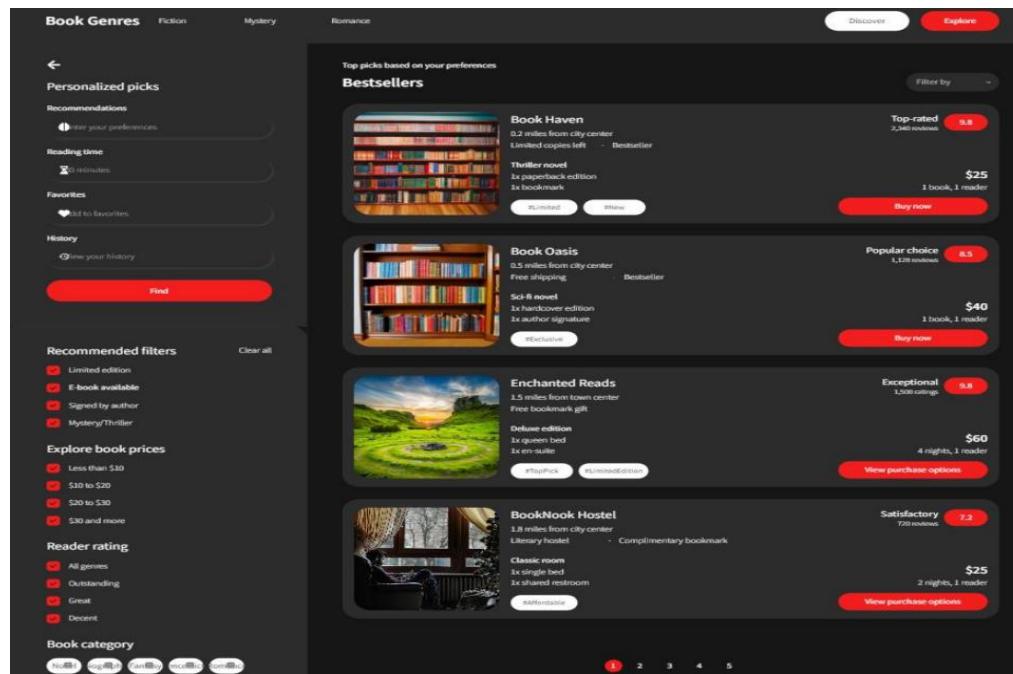


Fig. 2 Choosing Genres

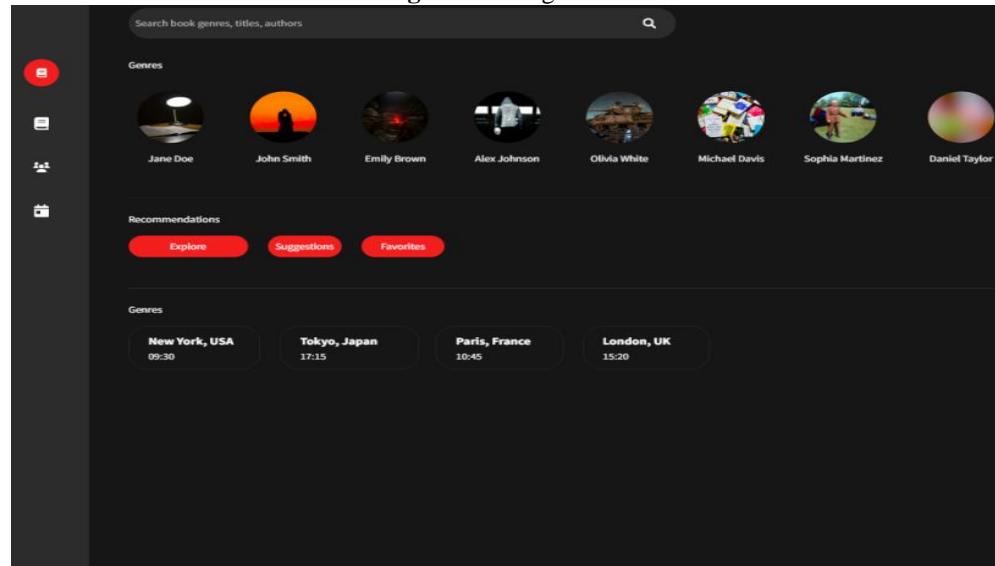


Fig. 3 Searching Book

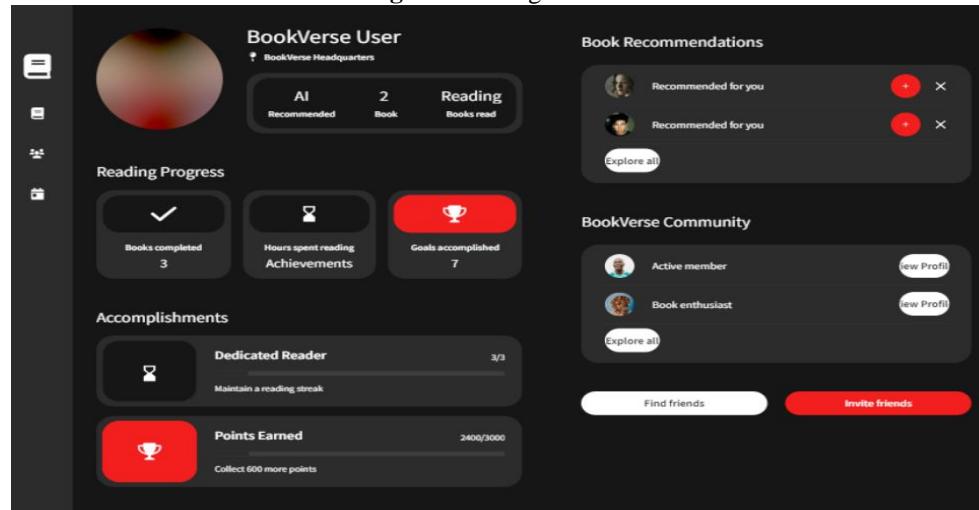


Fig. 4 Recommending

IV. CONCLUSION:

This study concludes by exploring different facets of recommendation systems suggesting creative solutions to problems and improving user experience. The first proposed strategy improves recommendation quality by integrating Jaccard Similarity into collaborative filtering methods, which offers a possible solution to problems like overspecialization and data sparsity. By utilizing the vast Book Crossing dataset and effective SQL database data processing, the system provides customized book recommendations based on user preferences. Furthermore, the second strategy places a strong emphasis on speed and simplicity, simplifying the suggestion process and raising user engagement with its user-friendly interfaces and dynamic recommendation updates. When taken as a whole, these suggested methods expand recommendation systems by providing knowledge and tactics to improve user happiness and recommendation accuracy across a range of industries. More study and testing will be necessary as recommendation systems develop to investigate novel ideas and improve current strategies, ultimately giving users more satisfying and successful recommendation experiences.

REFERENCES

- [1] Kurmashov, N., Latuta, K., & Nussipbekov, A. (2015). Online book recommendation system. 2015 Twelve International Conference on Electronics Computer and Computation (ICECCO).
- [2] Elgohary, A., Nomir, H., Sabek, I., Samir, M., Badawy, M. and Yousri, N.A. (2010). Wiki-rec: A semantic-based recommendation system using Wikipedia as ontology. In 10th International Conference on Intelligent Systems Design and Applications (ISDA). [2] Oku, K., Nakajima, S., Miyazaki, J. and Uemura, S. (2006). Context-aware SVM for context-dependent information recommendation. In MDM'06 proceedings of International Conference on Mobile Data Management.
- [3] Ghani, R. and Fano, A. (2002). Building recommender systems using a knowledge base of product semantics. In Proceedings of 2nd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems.
- [4] Miyahara, K. and Pazzani, M.J. (2000) Collaborative filtering with the simple Bayesian classifier. In Proceedings of Pacific Rim International Conference on Artificial Intelligence.
- [5] Asanov D. (2011) Algorithms and Methods in Recommender Systems. Berlin Institute of Technology Berlin, Germany.
- [6] G. Adomavicius and A. Tuzhilin, "Towards the Next Generation of Recommender Systems A Survey of the State-of-the-Art and Possible Extensions," IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734-749, 2005.
- [7] X. Su and T. M. Khoshgoftaar, "A Survey of Collaborative Filtering Techniques," Adv. Artif. Intell., 2009.
- [8] G. Linden, B. Smith, and J. York, "Amazon.com Recommendations: Item-to-Item Collaborative Filtering," IEEE Internet Comput., vol. 7, no. 1, pp. 76-80, 2003.
- [9] S. Kumar Jain and C. Rana, "Building a Book Recommender system using time-based content filtering," WSEAS Trans. Comput., vol. 11, no. 2, pp. 27-33, 2012.
- [10] "Whichbook.net." [Online]. Available: <http://whichbook.net>. [Accessed: 20-May-2015].