
© 2023 IJRAR March 2023, Volume 10, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23A3055 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 747

Pathfinding Visualizer Using Multiple Graph

Algorithms

Harsh Pandey

Delhi Technical Campus,

Greater Noida, India

Ashish Kumar

Delhi Technical Campus,

Greater Noida, India

Seema Verma

Delhi Technical Campus,

Greater Noida, India

Abstract— In the discipline of computer

science, visualizations of algorithms aid

reconstruction. Teaching and learning algorithms

are time-consuming and difficult process. In any

field of computer technology, visualization is a

useful tool for learning. An e-learning device for

shortest path algorithms visualizations is defined

in this work. The powerful e-learning tools allow

user to create, change, and save graph shapes, as

well as see how the algorithm works. By

implementing Dijkstra's, DFS, BFS and A*

algorithms, the theoretical usability of the

specified e-studying application is demonstrated

by visual aid technology. The preliminary test

results show that the e- studying tool is usable and

has the potential to help college students construct

useful mental models for quickest path

algorithms. This e-studying application is meant

to merge exceptional algorithms for determining

and understanding the quickest route.

Keywords— Visualization, algorithms,

Dijkstra’s algorithm, BFS, DFS, A*, e-studying

tool, quickest route.

I. INTRODUCTION

Pathfinding is the process of finding the most
efficient route between two points on a map. It's a hot
topic in AI research, having applications in
disciplines like GPS, real- time strategy games,
robotics, and logistics, and it can be applied in static,
dynamic, or real-world contexts. Recent
advancements in pathfinding have resulted in more
enhanced, accurate, and faster solutions, and it
continue to attract researchers' attention when more
complicated challenges occur or new AI methods are
invented. Since the publication of the Dijkstra
algorithm in 1959[1], a considerable deal of research

has been done in path finding to generate new
algorithms that are quick and deliver the best path.
Experimental data is used to validate the majority of
the studies. Because experiments are highly volatile,
the research must produce dependable and precise
information.

The shortest path problem is strongly connected to
pathfinding; consequently, pathfinding [2,5,11] is
defined as determining the optimal route in a given
graph (G) from a start node(s) to an end node (g),
where optimal refers to the quickest route, lowest cost
route, fastest path, or any other provided criteria.
Pathfinding is separated into two categories: SAPF
(Single Agent Pathfinding), which generates a path
for a single agent, and MAPF (multi - agent
Pathfinding), which generates a route for multiple
agents. The single-agent pathfinding problem is
exclusively considered in this work in a static
environment, which implies the map does not change
while the agent moves. Pathfinding has applications
in a variety of sectors, and because it is difficult to
explore all of them in this study, only video game
applications and 2D settings are considered. For the
implementation of path finding algorithm A* is
proved to be very efficient algorithm, many
researchers have done work for the improvement and
applications of A* algorithm [3,4]

In this work various path finding algorithms are
implemented to provide visual aid for the researchers,
educators and students, like; Dijkstra, DFS, BFS, A*.
Background the work is given in second section;
Implementation is described in third section followed
by result analysis.

II. BACKGROUND

A literature review is necessary to evaluate issues
that have not been addressed in previous studies.
Many researchers attempt to understand various types

http://www.ijrar.org/

© 2023 IJRAR March 2023, Volume 10, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23A3055 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 748

of conclusions, and a literature study is required to
improve earlier results. The current literature contains
a variety of intriguing elements that serve as the
foundation for the research and discussion.

An interesting area of mathematical concept is the
quantitative study of the origin of abstract
interactions among entities using graphs (networks).
Although the study of these structures is completely
theoretical, it can be utilized to simulate pairwise
connections in a variety of real-world systems. The
determination of shortest paths is one of the most
widely used applications in a variety of practical uses,
including graphs, industrial automation, 3D
modelling, TeX formatting, urban traffic plans, best
possible routing of Digital circuits, functions in
complex methods, telecom controller management,
broadband service navigation, estimating basic
linearization, site adhoc networks.

A. Data Structures

Adjacency lists and adjacency matrices are the
most common data structures used to describe graphs
in practice. Both data structures are arrays with
vertices as indexes. Here is the brief overview of the
same.

The adjacency list is still the most used data
structure for maintaining the graphs. A set of sets,
every having one of it's vertices' peers, is termed an
adjacency list. Unguided networks save each line uv
two times, once within u's neighboring node and now
in v's neighboring node; directed graphs get each side
uv only once, inside the tip u's neighbor nodes. For
both types of graphs, An entire area needed for just
the adjacency list is O(V + E), where V is the vertices
and E is the edges.

These neighbour lists can be represented in a
variety of ways, but conventional adoption employs a
basic one sided linked list. It can list the (out-)
neighbors of a node v in O(1 + deg(v)) duration by
scanning v's neighbour list. Similarly, reading the
neighbour list of u can detect whether uv is a side in
O(1 + deg(u)) time. It may reduce a time to O(1 + min
(deg(u), deg(v))) for undirected graphs by searching
the neighbour lists of u and as well as v at the same
time, halting either find an edge or reach the end of
the list.

The adjacency matrix was first presented by
Georges Brunel in the 18th century, is the other
common data structure for graphs. The adjacency
matrix of a graph G is a 0s and 1s, V * V matrix,
which is frequently described by a two - dimensional
array A[1... V, 1... V], for each member denoting
whether a specific branch is existing in G. A[u, v]:=
1 if and only if uv is E if the graph is unguided, and
A[u, v]:= 1 if and only if uv is E if the graph is guided
for all points u and v.

The adjacency matrix for undirected networks is
always equal, meaning A[u, v] = A[v, u] for all points
u and v. Directed graphs may or may not have a
uniform adjacency matrix, and the diagonal elements
may or not be zero.

By just searching in the right slot in an adjacency
matrix, we may determine whether two points are
joined by an edge in (1) time. It can scan the
corresponding row to get a list of all the neighbours
of a point in (V) time (or column). Even if a point has
some neighbours, that still have to search the whole
row to identify them all, hence this running time is
ideal in the worst situation.

Adjacency matrices, on the other hand, require
(V2) space independent of the number of edges in the
graph, hence Only for complex graphs, they were just
space-evident.

Fig. 1. Adjacency Matrix

B. Algorithms Used

Many heuristics have been developed for AI
algorithms for find paths [6,7,8,9]. There are several
different ways to explore graphs. The most widely
used approach is the BFS algorithm. BFS is a graph
traversal approach in which start at a particular
location (source or starting node) and go layer after
layer through the network, studying the surroundings
(nodes, which are directly connected to source node).
After that, it must start moving on to the next level of
neighbour nodes. It should travel the graph in a
breadthwise direction, as the title suggests: Begin by
travelling horizontally and examining all of the nodes
in the following frame. Continue on to the next level.

The DFS algorithm, which is a programming
technique, uses backtracking. It necessitates
exhaustively exploring every connection, traveling
further if allowed, and retracing if required. When
travelling ahead and there are no other nodes along
the present course, then backtrack on a same route to
locate nodes to traverse. All nodes would be explored
on the present course until all of the unvisited nodes
have been visited, after which a new route will be
chosen. The recursive behaviour of DFS can be
achieved using stacks. The following is the basic
concept:

http://www.ijrar.org/

© 2023 IJRAR March 2023, Volume 10, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23A3055 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 749

Pick a starting node and stack all of its neighbours.
Pop a node from the stack and put all of its
neighbouring nodes into a stack to get to the next
node. Continue this process until the stack is totally
depleted. Ensure the nodes that travel are labeled,
though. This should prevent from visiting the same
node multiple time. If it doesn't label the nodes visited
and back to the same node several times, that may
find itself in an endless loop.

Dijksta's Algorithm[1, 6,10] begins by analyzing
the graph to identify the quickest route among the
root node and else such nodes in the network. This
algorithm maintains a record of the quickest route
among every node and the root node, and it revise
these measures when a better route is found. When
the quickest path among a source node and another
node is found, that node is labelled as "reviewed" and
joined to the route. The step has followed until route
covers every other graph's node. As an outcome, it
has a route that links up the root node to that of other
nodes in the most efficient manner.

The A* [2,3,4] Method is a path-finding algorithm
that determines the shortest route among two points.

When traversing a map, this is a handy algorithm for
selecting the optimal route. A* was created to help
with the construction of a robotic that really can
discover its own Direction. It's really a useful
approach for navigating graphs. It prefers shorter
paths, make it a complete and efficient algorithm. An
efficient algorithm will seek the most cost-effective
workable solution, whereas a full algorithm will
locate all possible solutions. Another feature that
makes it so powerful is the usage of weighted graphs
in its implementation. In a weighted graph, the cost
of each set of lines is represented by numbers. This
means that the algorithms can figure out the quickest
and most optimal path in terms of travel and duration

III. VISUALIZATION METHODOLOGY

In this work the various algorithms are
implemented by using visualization aid so as to
understand it in a better way. The entire operation of
software is discussed in this section. How the project

began, how it functions, and how many phases of the
project were completed, as well as the problems
encountered at each level.

This project searches for the most direct route
among start point and end point. This application will
find the quickest path among start point and end point
and display the whole string of each router's id among
the two points. When there are many least hop count
routes among the start point and end point, the first
match route is chosen (Fig.2).

1. Search all the adjacent of start & end point.

2. If no adjacent for either start or end point found,
go to step10.

3. Enter all adjacents row wise, separate for start
& end point.

4. Search for common component among start &
end point row entities.

5. If match found, go to step 9 else go to step 4
until all combinations are checked.

6. Select next unsearched component from start of
matrix & discover its peers.

7. Reject already searched adjacents.

8. Go to step 3.

9. Return path string.

10. Return no match found.

11. End.

A pathfinding algorithm's primary goal is to
determine the quickest route among two places. This
software shows multiple pathfinding algorithms in
act. All of the algorithms on this software have been
converted for a two-dimensional grid, with a "cost"
of 1 for 90 degree turns and 1 for moves from one
node to another.

Various Stages of the work: The work has been
divided into five phases for development.

Fig. 2. Flowchart of Pathfinding(General)

All of the project's steps are covered in these
phases, from data gathering to processing to user
output. The five phases are as follows:

1. Graph Matrix Construction

2. Walls and event listeners have been added.

3. Integrate the Graph Algorithms.

4. Path-finding functionality has been
integrated.

5. Improved the design and user interface.

http://www.ijrar.org/

© 2023 IJRAR March 2023, Volume 10, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23A3055 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 750

Following are modules for the visualization of
various algorithms on the tool:

A. Algorithm Selection

From the "Algorithms" drop-down menu, select an
algorithm (Fig.3). It's worth noting that certain
algorithms are unweighted while some are weighted.
Weighted algorithms consider turns and weight
nodes, but unweighted algorithms do not.
Furthermore, not all algorithms guarantee the
quickest path.

Dijkstra's Algorithm: The founder of pathfinding
algorithms; ensures the quickest route.

A* Algorithm: The A* Method is a path-finding
algorithm that determines the quickest route among
two points.

Unweighted Breath-first Search: A fantastic
approach is proposed that always takes the shortest
possible route.

Unweighted Depth-first Search: Pathfinding
Method has been proposed that does not always
locate the quickest route.

B. Introducing up barriers

Barrier (or wall) is used to set the path for a
particular area of pathfinding. To add a wall, click on
the grid. A route cannot pass through walls because
they are impenetrable. To visualize algorithms and
perform other tasks, navbar buttons are used. From
the navbar, User can erase the chosen path, barriers
and obstacles, the rest of the board, and the
visualization pace.

The options in the pathfinding algorithm's bar at
the top are as follows (Fig. 3):

A. Algorithms mentioned

These techniques in the bar at the top were chosen
based on their relevance and level of complexity.
Theoretically, students have a hard time grasping
these algorithms. Users will be able to comprehend
these algorithms easier after they see how they are
visualized. After the showcase, the user will be able
to distinguish among the functionality of various
algorithms based on their temporal difficulty.

Fig. 3. Example of a figure caption. (figure caption)

B. Mazes and Patterns

To ensure a better and clear comprehension of
algorithms, a maze and patterns are added. Because
there will be walls or obstructions seen between
starting node and the objective node, the
representation can be compared to a real scenario.
Also, based on algorithm computation time, the user
will be able to choose which method is better. These
fun-filled options may prove to be the most

appropriate way for individuals looking for a
lighthearted manner to comprehend these hard topics.

C. Speed

The application has a speed bar for maintaining
visualisation pace; this feature is provided so
everyone understands at a varying rate, thus the user
can adjust the visualisation speed to his or her
preference.

D. Designing

Every node is portrayed by a matrix. Initially, a
computer-generated starting and ending node will be
shown. The user can move the start and end nodes
around to fulfil his or her preferences.

IV. RESULTS AND ANALYSIS

Various path finding algorithms (Dijkstra, DFS,
BFS, A*) were implemented with VSCode using
React JS, HTML,CSS.

Dijkstra's technique (Fig.4) is modified by the A*
(A-Star) approach, which determines the quickest
route faster. When it comes to determining the
quickest route, the A* pathfinding technique is
undoubtedly the best. Everyone uses A* as the golden
key, or industry standard.

The purpose of a Breadth First Search is to search
in all directions equally until the goal is
accomplished. In other words, it evaluates all of the
neighbours of a particular node, then all of the
neighbours of the neighbours, and so on.

BFS (Fig.5) is the absolute opposite of depth-first
search (DFS), which examines the node branch as
deep as feasible before having to retrace.

The DFS (Fig.6) is just as effective as the BFS for
generating topographical sequencing, mazes,
traversing trees in a certain sequence, building tree
structure, discovering a solution route with decision -
making choices, detecting a loop in a network, and so
on.

http://www.ijrar.org/

© 2023 IJRAR March 2023, Volume 10, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23A3055 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 751

Depth First Search explores by travelling as far
down each route as feasible prior returning. So for
that reason that this technique is also referred to as
Backtracking. Additionally, this trait enables the
method to be constructed in both repetitive and
recursively ways in a concise manner.

While Dijkstra's Algorithm is effective at
determining the quickest route, it wastes time
researching in directions that aren't fruitful. A*
(Fig.7) enhances this by permitting additional data to
be included in the heuristic function, which the
algorithm can use: Dijkstra’s Algorithm use the
distance from the root node.The A* algorithm uses
both the actual distance from the root and the
estimated distance to the goal.

Fig. 4. Visualization of Dijkstra’s Algorithm

Fig. 5. Visualization of BFS Algorithm

Fig. 6. Visualization of DFS Algorithm

Fig. 7. Visulaization of A* Algorithm

TABLE I. COMPARATIVE ANALYSIS OF VARIOUS

ALGORITHMS

Algorithm Time (sec:ms)

BFS 06:46

Dijkstra 09:90

DFS 12:65

A* 04:20

Table 1 shows the time taken by various traversal
algorithms on the visualization aid tool. The aim of
the software is to provide solutions to various
applications, mentioned below:

 It is being used to understand about algorithms
using electronic mean.

 It is being used to determine the shortest route.
It can be a component of the telephone
network.

 In IP routing, it is used to determine the Open
Shortest Possible Route First.

http://www.ijrar.org/

© 2023 IJRAR March 2023, Volume 10, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23A3055 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 752

 It is being used to locate the vertices of a graph
in rural / urban maps.

 It can create a GPS system that will direct to
the appropriate sites.

 BFS indexes are built using search engine
crawlers. It detects all links on the original
page in order to generate new pages, starting
with the source page.

 BFS is being used to find every neighbouring
nodes in peer-to-peer platforms such as
BitTorrent.

V. CONCLUSION

The work is done to develop a visualization aid for
demonstrating various path finding algorithms. It
achieved our goal of merging Graph Route Searching
with Visual and evaluating its overall quality. There's
been a major difference among conceptual and
practical comprehension of algorithm
implementation, as there has been in most other
teaching areas. Various shortest path algorithms like;
Dijkstra algorithm, DFS, BFS and A* are visually
demonstrated by the designed GUI. This work aimed
at providing the facility to have researchers, educators
and students to demonstrate their applications with
various path finding algorithms and utilize it to teach
and study current combinatorial graph algorithms.

REFERENCES

[1] Dijkstra, E.W. A note on two problems in

connexion with graphs. Numerische

Mathematik, 1959, 1:269–271

[2] Suryadibrata A, Young J, Luhulima R. Review of

Various A* Pathfinding Implementations in

Game Autonomous Agent. IJNMT (International

Journalof New Media

Technology).2019;6(1):43-49.

[3] Zheng T, Xu Y, Zheng D. AGV Path Planning

basedon Improved A* Algorithm. 2019 IEEE 3rd

Advanced Information Management,

Communicates, Electronic and Automation

Control Conference (IMCEC).2019, 1534-1538;

[4] Alani, Sameer, et al. “A hybrid technique for

single-source shortest path-based on A*

algorithm and ant colony optimization.” IAES

International Journal of Artificial Intelligence,

2020, 9(2): 356.

[5] Andiwijayakusuma D, Mardhi A, Savitri I,

Asmoro T. A Comparative Study of the

Algorithms for Path finding to Determine the

Adversary Path in Physical Protection System of

Nuclear Facilities. Journal of Physics:

Conference Series. 2019;1198(9):092002

[6] Szczepanski, Rafal, and Tomasz Tarczewski.

“Global path planning for mobile robot based on

Artificial Bee Colony and Dijkstra’s algorithms.”

2021 IEEE 19th International Power Electronics

and Motion Control Conference

(PEMC).IEEE,2021:724-730

[7] Xu, Yan, et al. “Heuristic and random search

algorithm in optimization of route planning for

Robot’s geomagnetic navigation.” Computer

Communications 154 (2020):12-17.

[8] Felner A, Li J, Boyarski E, Ma H, Cohen L,

Kumar T et al. Adding Heuristics to

ConflitBased Search for Multi-Agent Path

Finding. International Conference on Automated

Planning and Scheduling.2018:28

[9] Ko J, Lee D. Path Optimize Research used Ray-

Tracing Algorithm in Heuristic-based Genetic

Algorithm Pathfinding. Journal of Korea Game

Society. 2019, 19(6): 83-90

[10] Mousaei, Ali, et al. Optimizing Heavy Lift Plans

for Industrial Construction Sites Using Dijkstra’s

Algorithm. Journal of Construction Engineering

and Management, 2021, 147(11), :04021160

[11] Algfoor Z.A., Sunar, M.S., &Kolivand,H. A

comprehensive study on pathfinding techniques

for robotics and video games. International

journal of Computer Games and Technology

(2015): 7.

http://www.ijrar.org/

