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Abstract: 

Climate change is causing a slew of challenges for the world .COVID-19, a newly developing zoonotic illness with likely 

bat origins that has infected millions of people and had severe global repercussions, was highlighted. For successful 

prevention and control of probable zoonosis, it is highly advised that One Health procedures be used. With a focus on the 

potential influence of climate change on natural animal and human systems, greater predictions and mitigations for how 

such consequences would vector born and zoonotic illnesses in humans and animals will be possible. Climate change has a 

number of negative consequences for agriculture, water resources, forests and biodiversity, health, coastal management, 

and temperature rise. Many helminthic, bacterial, viral, and protozoan parasitic diseases, as well as insect and ectoparasitic 

vectors that impact both animals and people, are affected by climate and weather. 
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Introduction: 

Interactions between animals and humans are increasingly being recognised as potential origins of epidemics and the 

production of "novel pathogens." Sixty per cent of new pathogens are zoonotic, according to estimates. Warmer 

temperatures may allow a parasite to survive in the environment for longer periods of time, increase an insect replication 

cycle, allow an infected host animal species to survive winter in large numbers, increase in population, and expand their 

range of habitation, all of which increase the chance of infection transmission to humans. Climate change is expected to 

have a wide range of effects on human health, many of which have already been well investigated (Confalonieri et al. 

2007; Ebi et al. 2006, 2008; Frumkin et al. 2008; Patz and Olson 2006). The fundamental theme is that global climate 

change is a severe threat to the world, capable of causing social unrest, population displacement, economic problems, and 

environmental damage, among other things. Mitigation of global climate change should be a priority for society and its 

governments in order to achieve a greener, less anthropogenic ally damaged world, according to new ecological trends in 

society. This rising menace poses a huge challenge for humanity in the twenty-first century. Its consequences cover a wide 

range of topics that haven't been thoroughly investigated by society at various levels. Human activities are changing the 

world's climate, and this trend is expected to accelerate in the future decades. 

If global temperature rises are not to surpass 2°C—the International Energy Authority warns that "the door to 2°C is 

closing"—urgent action is now required to reduce carbon dioxide  (International Energy Agency, 2011). Indeed, emissions 

must be drastically reduced within the next two decades, with zero net emissions attained by the end of the century, aided 
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by increasing carbon dioxide bio sequestration from the atmosphere (Friedlingstein et al, 2011). Emissions, on the other 

hand, have continued to rise, having increased by 49 percent since 1990 and by a faster-than-average annual pace of 5.9% 

in 2010. Growing evidence includes direct and indirect consequences on human health in the context of the numerous 

impacts that climate change can have on the world and civilization. The delicate balance or interaction of ecological, 

physical, and socio economical systems of the biospheres is crucial to the population's health (WHO, 2003). This is one of 

the numerous areas that multiple studies have lately highlighted in relation to the implications of climatic change for global 

public health. It is critical to comprehend this relationship since it will exacerbate the already large burden of diseases on 

national economies and public health, even if some of them, such as zoonotic diseases, are often confined. Authorities must 

be able to analyse, anticipate, and track human health vulnerabilities as a result of climate change in order to plan for or 

take action to mitigate these risks (Hambling et al, 2011). 

Brucellosis, Japanese encephalitis, Leptospirosis, Cutaneous leishmaniasis, Kyasanur forest diseases, Nipha virus, Scrub 

typhus are some of the world's zoonotic diseases, as well as Malaria, Dengue fever, and other vector-borne diseases. An 

emerging zoonosis is defined by the World Health Organization as one that is newly recognised or evolved, or one that has 

previously occurred but has shown an increase in incidence and geographic, host, or vector range extension. The degree of 

climate sensitivity influences the distribution and prevalence of zoonotic illnesses. Many people will be displaced as sea 

levels rise, or will be severely impacted by droughts and famines, a decrease in suitable agricultural lands, an increase in 

food-borne diseases, water-borne diseases, vector-borne diseases, as well as an increase in premature deaths and diseases 

linked to air pollution in some parts of the world (Mills, 2009; PAHO, 2008; United Nations, 2006; Diaz, 2006). Although 

adjustments in the distribution and behaviour of vectors and animal species are likely to worsen these emerging situations, 

indicating that biologic systems are already responding to ecological changes, more research is needed to fully understand 

their interacting functions and how to control them. 

Infections transmitted from animal to man are known as zoonotic infections. They can be transmitted directly (via direct 

touch or contact with animal products) or indirectly (through an intermediary vector such as an arthropod or an insect) 

(Pappas, 2011). Despite the fact that zoonotic infections have a significant global burden, both in terms of immediate and 

long-term morbidity and mortality, as well as emergence and socioeconomic, ecological, and political correlations, 

scientific and public health interest in, and funding for, these diseases remains low. (Christou, 2011; Akritidis, 2011), 

Different statistical analyses, most of them based on linear regressions, have linked extreme climatic anomalies with 

significant alterations in the epidemiological patterns of diseases, sometimes coupled directly and indirectly on time and 

space, in an attempt to understand these complex climate changes impact on biological and ecological systems in the 

context of and their implications for  human health. Geographic information systems (GIS) and remote sensing (spatial 

epidemiology) have also supported these observations and are actively assisting in the development of systems for the 

prediction and forecasting of such diseases based on climate variability and change described(Rodriguez-Morales et al, 

2010; Rodriguez-Morales, 2011). 

Geo climatic variation  

Changes in land and ocean temperatures, sea level and acidity, precipitation patterns, wind patterns, land characteristics 

and use, soil conditions, and extreme weather events can all be used to explain geoclimatic variations (torrential rains, 

floods, extreme wind events, heat waves, and droughts). Global warming is the unprecedented rapid increase in the Earth's 

average surface temperature over the last century, owing primarily to anthropogenic greenhouse gas (GHG) emissions 

(Baede et al., 2001). In comparison to the 1850–1900 (preindustrial) period, the global mean surface temperature increased 

by 0.99 C (0.84–1.10 C) in the 2001–2020 period and 1.09 C (0.95–1.20 C) in the 2011–2020 period, according to the 

Intergovernmental Panel on Climate Change (IPCC), with larger increments over land (1.59 [1.34–1.83] C) than over the 

ocean  (0.88 [0.68–1.01] ◦C) for the 2011–2020 period (Intergovernmental Panel on Climate Change, 2021). 

Various zoonoses, such as vector-borne diseases (e.g., RVF), parasite infections (e.g., fascioliasis), water/foodborne 

diseases, and rodent-borne diseases, may become more common and have a greater impact in the future, as anticipated by 

climatic change models. Tick growth phases are influenced by soil conditions such as moisture and composition, as well as 

the survival and dissemination of pathogens such as Bacillus anthracis spores, which require an ideal soil component for 

survival (Hugh-Jones and Blackburn, 2009). Tick mortality and the emergence of fungal illnesses such as Valley Fever 
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(coccidioidomycosis) (Park et al., 2005), which has zoonotic potential, can be caused by dry soil conditions and soil 

evaporation (Gaidici and Saubolle, 2009). Warmer, drier summers are expected, which will enhance soil evaporation and 

accelerate dust release into the atmosphere. Pathogens such as bacteria, fungi, and bacterial spores (e.g., Escherichia coli, 

Salmonella, and Coccicdioides) are also transported through the air by soil dust (Boxall et al., 2009). Wind has the 

potential to transmit viruses in the air (wind and dust) to far-flung locations. The pathogen's ability to disperse in the air is 

determined by surface and air temperatures, as well as wind speed (Boxall et al., 2009). According to Chen et al. (2010), 

the H1N1 influenza virus concentration in the air was much greater during Asian Dust Storms (ADS) than on regular days. 

Furthermore, high winds can reduce biting rates while also increasing the spatial spread of vectors such as Dipterans (e.g., 

Aedes species and sand flies), potentially increasing disease transmission in new areas (Khan et al., 2019). 

 

Table 1: List of  Zoonotic Diseases, etiological agents, animal hosts, symptoms in humans and ecological conditions. 

 

Zoonotic Disease Etiological agents Animal host Symptoms in 

humans 

Ecological 

conditions 

     

Antrax Bacillus anthracis Cattle, 

horses, 

sheep, 

pigs, dogs, 

bison, elks, 

white-tailed 

deer, goats, 

and mink 

 

Skin, respiratory 

organs, or GI 

tract 

 

Wild life , high 

temperature, 

precipitation, and 

vegetation 

Tuberculosis 

 

Mycobacterium 

bovis, 

Mycobacterium 

caprae, 

Mycobacterium 

microti 

 

Cattle, sheep, 

swine, 

deer, wild 

boars, 

camels, 

and bison 

 

Respiratory organs 

bone 

marrow 

 

Soil and aquatic 

environments, 

Population 

displacement 

Brucellosis 

 

Brucella abortus 

Brucella melitensis, 

Brucella suis, 

Brucella canis, 

 

Cattle, goats, 

sheep, pigs, 

and dogs 

 

Fever, usually high 

in the 

afternoon, back pain, 

joint 

pain, poor appetite, 

and 

weight loss 

 

Cool most 

condition 

Bubonic plague  

 

Yersinia pestis Rock 

squirrels, 

wood 

rats, ground 

squirrels, 

prairie dogs, 

mice, voles, 

chipmunks, 

and rabbits 

 

Fever, chills, 

abdominal pain, 

diarrhea, vomiting, 

and 

bleeding from natural 

opening 

 

Semiarid upland 

forest and 

grasslands where 

rodent species 

can be involved 

Glanders Burkholderia 

mallei 

Horses, 

donkeys, and 

mules 

 

Fever, sweating, 

muscle aches, 

chest pain, muscle 

tightness, 

and headache 

 

Not fully 

understood 

Leprosy Mycobacterium Monkeys, Skin lesions Open water 
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leprae rats, mice, 

and 

Cats 

 bodies, river, 

creek 

Leptospirosis Leptospira 

interrogans 

 

Wild and 

domestic 

animals 

including pet 

dogs 

 

Fever, abdominal 

pain, 

jaundice, and red eye 

 

Moist or wet 

environments 

Tularemia Francisella 

tularensis 

 

Rabbits, 

squirrels, 

muskrats, 

deer, sheep, 

bull snakes, 

wild rodents, 

beavers, cats, 

and dogs 

 

Joint pain, diarrhea, 

and dry 

cough 

 

Cold,moist 

environments 

including water, 

soil,hay,straw  

Arcobacter 

infections 

 

Arcobacter butzleri, 

Arcobacter 

cryaerophilus, 

Arcobacter 

skirrowii 

Cattle, sheep, 

pigs, and 

chickens 

 

Abdominal pain, 

fever, and 

vomiting 

 

Streams and 

rivers 

Actinomycosis Actinomyces bovis 

 

Cattle, sheep, 

horses, 

pigs, dogs, 

and other 

mammals 

 

Swelling of lymph 

nodes, soft 

tissues, skin, and 

abscess 

 

Fresh water, sea-

water,cold and 

wram blooded 

animal,soil 

Bordetellosis Bordetella 

bronchiseptica  

 

Cats and 

dogs 

Respiratory problem 

 

Ecological 

niches,ranging 

from soil,water 

and plant 

Lyme disease Borrelia 

burgdorferi 

Cats, dogs, 

and horses 

Fever, headache, skin 

rash, 

and erythema 

migrans 

 

Forest 

fragmentation 

and reforestation 

Campylobacter 

enteritis 

Campylobacter 

jejuni, 

Campylobacter coli 

 

Cattle, sheep, 

chickens, 

turkeys, 

dogs, cats, 

mink, 

ferrets, and 

pigs 

 

Enteric disorder 

 

Sensetive 

environmental 

condition such as 

temperature, 

availability of 

water and 

oxygen. 

Campylobacter 

fetus 

infection 

 

Campylobacter 

fetus subsp. 

fetus, 

Campylobacter 

fetus subsp. 

testudinum 

 

Cattle, sheep, 

and goats 

Enteric disorder 

 

 

Sensetive 

environmental 

condition 

Clostridioides 

difficile 

Infection 

Clostridioides 

difficile 

Cattle, 

horses, and 

birds 

Pseudomembranous 

colitis, 

and diarrhea 

 

moist soil and 

aquatic 

Corynebacterium 

ulcerans 

and 

Corynebacterium 

pseudotuberculosis 

Corynobacterium 

ulcerans, 

Corynobacterium 

pseudotuberculosis 

Cattle, dogs, 

and cats 

Diphtheria 

 

Low temperature 

and acidic pH 

conditions area 
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infections 

 

Enterohemorrhagic 

Escherichia coli 

infections 

E coli O157:H7  

 

Cattle, sheep, 

pigs, deer, 

dogs, and 

poultry 

 

Enteritis and 

Hemolytic–uremic 

syndrome 

 

Temperature in 

natural 

environment is 

low <30 

Helicobacter 

infection 

Helicobacter 

pullorum, 

Helicobacter suis  

Poultry and 

pigs 

Peptic ulcer 

 

Not fully 

understood 

Vibriosis Vibrio 

parahaemolyticus 

Farm animals Enteritis 

 

Aquatic 

environment in 

warm and low 

salinity water 

Salmonellosis Salmonella 

enterica, 

Salmonella bongor 

 

Domestic 

animals, 

birds, 

and dogs 

Enteritis 

 

Wet 

environments 

shielded from the 

sun 

Ehrlichiosis 

 

Anaplasma 

phagocytophilum, 

Ehrlichia ewingii, 

Ehrlichia 

chaffeensis, 

Ehrlichia canis, 

Neorickettsia 

sennetsu 

 

Sheep, cattle, 

deer, dogs, 

and cats 

 

Fever, headache, 

fatigue, 

muscle aches, and 

occasionally 

rash 

 

Domestic 

environment 

Pasteurellosis 

 

 

 

 

 

 

Pasteurella 

multocida 

 

Poultry, pigs, 

cattle, 

buffaloes, 

sheep, goats, 

deer, cats, 

dogs, and 

antelope 

 

Fever, vomiting, 

diarrhea, and 

gangrene 

 

Water pH, 

sodium chloride, 

clays 

Japanese 

Encephalitis 

Genus-Culex 

Family-

triteaniorhynchus 

Pig, Cattle Brain swelling, 

headache, high fever, 

disorientation 

Agricultural area 

Rabies 

 

Rabies virus, 

Genus—Lyssavirus 

Family—

Rhabdoviridae 

 

Cattle, 

horses, cats, 

dogs, 

bats, 

monkeys, 

wolves, 

skunks, 

rabbits, and 

coyotes 

 

Nervous system 

 

Diverse 

ecological 

communities,land 

scap effect 

Newcastle disease 

 

Paramyxovirus, 

Genus—Avulavirus 

Family—

Paramyxoviridae 

 

Poultry and 

wild birds 

Conjunctivitis Domestic poultry 

under non-

experimental 

conditions 

Avian influenza 

 

Influenza A virus 

Genus—

Alphainfluenzavirus 

Family—

Orthomyxoviridae 

 

Ducks, 

chickens, 

turkeys, 

dogs, cats, 

pigs, whales, 

horses, seals, 

and wild 

birds 

 

Flu like symptoms, 

diarrhea, 

and pneumonia 

 

Open access to 

watering and 

feeing areas by 

wild migratory 

birds 
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Rift Valley fever 

 

Rift Valley fever 

virus 

Genus—

Phlebovirus 

Family—

Bunyaviridae 

 

Buffaloes, 

camels, 

cattle, 

goats, and 

sheep 

 

Influenza- like fever, 

muscle 

pain, joint pain, and 

headache 

 

RVF outbreaks 

are triggered by a 

favourable 

environment and 

flooding 

Ebola virus disease 

(Ebola 

Hemorrhagic 

Fever) 

 

Ebola virus 

Genus—Ebolavirus 

Family—

Flaviviridae 

 

Monkeys, 

gorillas, 

chimpanzees, 

apes, and 

wild 

antelopes 

 

Fever, intense 

weakness, 

muscle pain, 

headache, sore 

throat, hemorrhage, 

vomiting, 

diarrhea, kidney, and 

liver 

failure 

 

Vegetation index 

Marburg viral 

hemorrhagic fever 

 

Marburg virus 

Genus—

Marburgvirus 

Family—

Flaviviridae 

 

Fruit bats 

and monkeys 

 

Hemorrhage, fever, 

muscle 

pains, watery 

diarrhea, 

abdominal pain, and 

non-itchy 

rash 

 

Vegetation index, 

rural environment 

in vicinity of 

livestock 

Chikungunya fever 

 

Chikungunya virus 

Genus—Alphavirus 

Family—

Togaviridae 

 

Monkeys, 

birds, and 

rodents 

 

High fever, severe 

joint pain, 

muscle pain, and 

skin rash 

 

Not fully 

understood 

Dengue fever 

 

Dengue virus 

Genus—Flavivirus 

Family—

Flaviviridae 

 

Monkeys and 

dogs 

High fever, skin rash, 

skin 

hemorrhage, and 

shock 

 

Not fully 

understood 

Hantavirus 

infection 

(Hantavirus 

Pulmonary 

Syndrome) 

 

Hantavirus 

Genus—

Orthohantavirus 

Family—

Hantaviridae 

 

Deer mice, 

cotton rats, 

rice rats, 

white-footed 

mice, shrews, 

and moles 

 

Respiratory problem, 

high 

fever, dizziness, 

chills, and 

abdominal problems 

 

Mild winters and 

summer rainfall 

may cause 

dramatic 

increases in 

rodent population 

Zika fever 

 

Zika virus 

Genus—Flavivirus 

Family—

Flaviviridae 

 

Apes and 

monkeys 

Fever, pain, and 

conjunctivitis 

 

Warm climatic 

environment 

West Nile fever 

 

West Nile virus 

Genus—Flavivirus 

Family—

Flaviviridae 

 

Horses, 

birds, and 

reptiles 

 

Headache, skin rash, 

swollen 

lymph nodes, stiff 

neck, 

disorientation, coma, 

tremors, 

convulsions, and 

paralysis 

 

River fields 

AIDS 

 

HIV 

Genus—Lentivirus 

Family—

Retroviridae 

 

Monkeys and 

chimpanzees 

 

Immunosuppression, 

influenza-like 

symptoms, 

fever, chills, rash, 

night sweats, 

muscle aches, 

Environmental 

consequences 

like erosive 

coping strategies, 

changes in 

livehoods and 
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fatigue, swollen 

lymph nodes 

 

increased reliance 

on natural 

resources  

Severe acute 

respiratory 

syndrome (SARS) 

 

SARS coronavirus 

(SARS-CoV) 

Genus—

Coronavirus 

Family—

Coronaviridae 

 

Bats, dogs, 

cats, ferrets, 

minks, tigers, 

and lions 

 

influenza-like 

symptoms, 

fever, muscle pain, 

severe 

cases progress to a 

respiratory 

disease and 

pneumonia 

 

Wild 

environment 

Monkey pox 

 

Monkeypox virus 

Genus—

Orthopoxvirus 

Family—

Poxviridae 

 

Squirrels, 

Gambian 

poached rats, 

dormice, 

different 

species of 

monkeys, 

and others. 

 

Fever, pox lesions on 

skin 

 

Not fully 

understood 

Trichinellosis Trichinella spp. 

 

 

Pigs, dogs, 

cats, rats, and 

other wild 

species 

Gastrointestinal, e.g., 

nausea, 

vomiting, diarrhea, 

and 

abdominal pain 

 

Domestic 

environment 

Visceral larva 

migrans 

 

Baylisascaris 

procyonis, 

Toxocara canis, 

Toxocara cati, and 

Ascaris suum 

 

Birds, emus, 

cats, 

chinchillas, 

porcupines, 

prairie dogs, 

rabbits, 

weasels, 

woodchucks, 

and woodrats 

 

Gastrointestinal, e.g., 

coughing, shortness 

of breath, 

fever, and abdominal 

pain 

 

Domestic 

environment 

Cutaneous larval 

Migrans 

Ancylostoma 

braziliense  

Dogs and 

cats 

Subcutaneous tissue 

 

Domestic 

environment 

Hydatidosis Echinococcus 

granulosus 

 

Buffaloes, 

sheep, goats 

and adult 

stray or 

shepherd 

dogs 

 

Hydatid cysts in 

liver, lungs, 

bones, kidneys, 

spleen, 

abdominal pain, and 

respiratory problem 

 

Low air 

temperature, high 

humidity of soil, 

high rainfall  

Cryptococcosis Cryptococcus 

neoformans 

 

Dogs, cattle, 

horses, 

sheep, goats, 

birds, and 

wild animals 

 

Respiratory 

problems, fever, 

nausea, and vomiting 

 

Diverse 

ecological niches 

Cryptosporidiosis Cryptosporidium 

parvum  

 

Cattle, sheep, 

pigs, goats, 

horses, and 

deer 

 

Diarrhea lasting 3–

14 days. 

Abdominal pain, 

nausea and 

malaise are frequent. 

Some 

patients have a slight 

fever 

 

Aquatic 

environment 

Fascioliasis Fasciola hepatica, Cattle, sheep, Intense internal Rainfall, high 
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Fasciola gigantica 

 

goats, and 

other 

ruminants 

 

bleeding, 

fever, nausea, 

swollen liver, 

skin rashes, and 

extreme 

abdominal pain 

 

humidity, 

adequate 

temperature  

Tinea/ringworm 

infection 

 

Microsporum spp., 

Trichophyton spp. 

 

All animals 

like cattle, 

sheep, goats, 

cats, and 

dogs 

 

Skin lesions 

 

Warm , moist 

environment 

Aspergillosis Aspergillus spp. 

 

All domestic 

animals 

and birds 

Respiratory problems 

 

Warm , moist 

environment 

Blastomycosis Blastomyces 

dermatitidis 

 

Mostly dogs, 

cats, and 

less common 

in horses, 

ferrets, deer, 

wolves, 

African 

lions, 

bottle-nosed 

dolphins, 

and sea lions 

 

Fever, malaise, 

pneumonia, 

verrucous skin 

lesions, 

subacute meningitis, 

gait 

abnormalities, and 

seizures 

 

Droughts 

environment 

Coccidioidomycosis Coccidioides 

immitis, 

Coccidioides 

posadasii 

 

Dogs, horses, 

pigs, and 

ruminants 

 

Hypersensitivity 

reaction, 

fever, erythema 

nodosum, 

erythema multiform, 

arthralgia, pleuritic 

chest pain, 

and dry cough 

 

Drought 

environment 

Cryptococcosis Cryptococcus 

neoformis 

 

 

Cats, dogs, 

cattle, horses, 

sheep, goats, 

birds, and 

wild animals 

 

Meningitis, fever, 

malaise, 

headache, neck 

stiffness, 

photophobia, cough, 

nausea, 

and vomiting 

Lower 

environmental 

conditions 

Sporotrichosis Sporothrix 

schenckii 

 

Dogs, cats, 

horses, cows, 

camels, 

dolphins, 

goats, 

mules, birds, 

pigs, rats, 

and 

armadillos 

 

Erythematous 

papulonodular 

lesions, cough, low-

grade 

fever, weight loss, 

pulmonary 

dysfunction, and 

lung abscess 

 

Fluctuated 

temperature and 

humidity  

Malassezia 

infection  

Malassezia spp. Dogs and 

cats 

 

Pityriasis versicolor, 

seborrheic 

dermatitis, atopic 

eczema, 

folliculitis, and 

dandruff 

 

Domestic 

environment 

Histoplasmosis Histoplasma Cats, dogs, Often asymptomatic, Environment 
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capsulatum 

var. capsulatum 

 

rabbits, and 

rats 

 

fever, 

productive cough, 

chest pain, 

weight loss, 

hepatosplenomegaly, 

and 

hematologic 

disturbances 

 

disruption due to 

floods, storms 

Q-Fever Coxiella burnetti 

 

Cattle, sheep, 

goats, 

dogs, cats, 

chickens, and 

wild animals 

 

Fever, and skin rash 

 

Warm weather 

with dry soil 

Epidemic typhus Rickettsia 

prowazekii 

 

 

Dogs, lambs, 

goat kids, 

calves, 

donkeys, and 

young 

camels 

High fever, 

headache, malaise, 

myalgia, arthralgias, 

rashes, 

CNS manifestations, 

petechiae, 

and cough 

 

Moist, scrubby 

vegetation  

Rocky mountain 

spotted fever 

 

Rickettsia rickettsii  Rodents and 

dogs 

 

Fever, headache, 

rash, malaise, 

myalgia, anorexia, 

nausea, 

vomiting, abdominal 

pain, and 

photophobia 

 

Wildfires, longer 

droughts and 

tropical strom 

Queensland tick 

typhus 

Rickettsia australis 

 

 

Bandicoots, 

rodents, 

cattle, 

wombats, 

and 

companion 

animals 

Mild fever, macular, 

papular, 

or maculo-papular 

rash, rigors, 

myalgia, arthralgia, 

acute 

renal failure, 

headache, and 

lymphadenopathy 

 

Plenty of 

moisture and 

scrub vegetation 

Scrub typhus Orientia 

tsutsugamushi  

Rodents 

 

Fever, rash, myalgia, 

diffuses 

lymphadenopathy, 

necrotic 

eschar, cough, and 

headache, 

diarrhea 

 

Moist, scrubby 

vegetation 

Enzootic abortion Chlamydia abortus  

 

Cattle, 

horses, 

sheep, 

pigs, cats, 

and rabbits 

Abortion 

 

Veld grazing 

environment 

Psittacosis Chlamydia psittaci 

 

Parrots, 

parakeets, 

lories, 

cockatoos, 

cattle, sheep, 

and goats 

 

Cough, dyspnea, 

pleuritic 

chest pain, epistaxis, 

sore 

throat, hemoptysis, 

fever, 

malaise, anorexia, 

chills, 

Agriculture land 
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nausea, vomiting, 

myalgias, 

arthralgias, 

headache, and 

abdominal pain 

 

Chlamydiosis Chlamydia felis, 

Chlamydia 

trachomatis 

Cats and 

mice 

 

Conjunctivitis, 

urethritis, 

cervicitis, pelvic 

inflammatory 

disease, ectopic 

pregnancy, 

tubal factor 

infertility, 

epididymitis, 

proctitis, and 

reactive arthritis 

(sequelae) 

 

Biotic and abiotic 

stress  

Trypanosomiasis Trypanosoma 

brucei  

 

 

Antelopes, 

cattle, 

camels, 

and horses 

chronic and 

intermittent fever, 

headache, pruritus, 

lymphadenopathy, 

hepatosplenomegaly, 

and 

sleep disturbance 

 

Wild life 

conservation area 

Leishmaniasis Leishmania 

infantum  

 

Cats, dogs, 

horses, and 

bats 

 

Skin lesions, 

hepatosplenomegaly, 

and 

wasting 

 

Agricultural 

environment 

African sleeping 

sickness 

Trypanosoma 

brucei  

 

Antelopes, 

cattle, 

camels, 

and horses 

 

High fever, 

headache, nausea, 

vomiting, and 

erythematous 

plaque formation 

 

Humidity, 

wildlife 

distribution, 

change to human 

livestock 

Chagas disease Trypanosoma cruzi 

 

Domestic 

pigs and cats, 

opossums, 

armadillos, 

raccoons, 

and woodrats 

 

severe myocarditis, 

meningoencephalitis, 

swelling 

or redness of skin, 

fever, 

swollen lymph 

nodes, head or 

body aches, fatigue, 

nausea, 

vomiting, and 

diarrhea 

 

High temperature 

environment 

Giardiasis Giardia lamblia  

 

 

Dogs, cats, 

ruminants, 

and pigs 

Diarrhea, abdominal 

cramping, bloating, 

flatulence, 

malaise, nausea, and 

anorexia 

 

Aquatic 

environment 

Toxocariasis Toxocara canis, 

Toxocara cati  

Dogs and 

cats 

 

Fever, anorexia, 

hepatosplenomegaly, 

rash, 

pneumonitis, asthma, 

and 

visual impairment 

Tropical and sub-

tropical 

environment 

http://www.ijrar.org/


© 2022 IJRAR October 2022, Volume 9, Issue 4                           www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00027 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 694 
 

 

Toxoplasmosis Toxoplasma gondii  

 

Pigs, sheep, 

goats, 

poultry, and 

rabbits 

 

Lymphadenopathy, 

fever, 

malaise, night 

sweats, myalgia, 

sore throat, and 

maculopapular rash 

 

Wild field 

Balantidiasis Balantidium coli  

 

Ruminants, 

pigs, guinea 

pigs and rats 

 

Chronic diarrhea, 

occasional 

dysentery, nausea, 

foul breath, 

colitis, abdominal 

pain, weight 

loss, and deep 

intestinal 

ulcerations 

 

Urban agriculture 

 

Changes in reservoir and vector as a result of manic climatic fluctuation generate new ecological niches for 

vectors, impacting disease dissemination in both time and space. One of six basic mechanisms is likely to be 

implicated if climate change influences the prevalence of zoonotic and vector-borne diseases by influencing 

non-human hosts, vectors, and pathogens: 

a) Range shifts: Altitudinal temperature gradients are around 1,000 times steeper than latitudinal temperature 

gradients (Colwell et al. 2008), making altitudinal transects more useful models for evaluating the effects of 

climate change on plant and animal populations. Range shifts aren't always limited to latitude and height. Several 

host and vector species have environment preferences. The frequency with which hosts, vectors, or pathogens 

appear in certain habitat categories aids in determining the relative risk of disease to humans linked with these 

habitats (Mills and Childs 1998). Climate change's impact on plant and animal communities' species composition 

is poorly known. Because there is a lack of current and historical data on the distributions of many species and 

populations, it is difficult to establish geographic changes in the distributions of animal species as a result of 

climate change (Jannett et al. 2007; Thomas et al. 2006). Nonetheless, a variety of taxa, including important 

mammalian hosts and arthropod vectors, have seen range changes. These range shifts have tended to be poleward 

and upward (Hickling et al. 2006; Rosenzweig et al. 2007), with overall expansions, reductions, or no change in 

the total area occupied by a population or species. In Europe, Ixodes ricinus, the vector of Lyme disease and tick-

borne encephalitis, has seen altitudinal and latitudinal range alterations (Gage et al. 2008). Climate-change-induced 

range shifts are unlikely to affect entire groups or assemblages at the same time (Root and Schneider 2002). 

Species migrate at varying rates and under different conditions, depending on their motility, tolerances, and 

physiological limitations. As a result, assemblages of species are likely to shift: Some species will experience 

increased population densities and competitive release in new areas, allowing them to colonise habitats from which 

they were previously excluded, whereas others will face increased pressures and decreased population densities as 

new competitors or predators move into their ranges, or they will be unable to migrate as  a result of climate 

change, leaving them stranded on a diminishing islands with suitable habitat. 

b) Land temperature:  

Temperatures around the world are rising at an unprecedented rate, and this is primarily due to anthropogenic 

emissions of GHGs are greenhouse gases. Temperature rises of 0.2 degrees Celsius per decade (The 

Intergovernmental Panel on Climate Change 2007) has predicted Change, with a mean temperature rise ranging 
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from 1.8°C to 4°C by the end of the twenty-first century. The distribution of vectors, and thus the risk of disease, is 

expected to increase. Arthropod vectors are the most sensitive to temperature shifts in the environment, resulting in 

an increase in vector-borne zoonotic diseases.Mosquitoes, ticks, and sandflies are ectothermic and live in warm 

environments, have cyclical processes that are temperature dependent. Temperature changes at the extremes are 

likely to cause transmission. (Githeko AK et al., 2000). Mosquitoes are directly affected by temperature. It causes 

increased activity, increased reproduction, and thus increased frequency of blood meals and faster blood digestion. 

(Martine V et al., 2008.) Pathogens carried by mosquitoes mature at a faster rate as well. When the temperature of 

the water rises, mosquito larvae develop faster, increasing the overall vector capacity. (Reiter P et al. 2008.) The 

abundance of the competent vector Aedes albopictus in Italy aided in the first outbreak of Chikungunya infection 

in a temperate climate. (Rezza G et al. 2007.) Ticks can survive at higher latitudes and altitudes in warmer 

climates. The ideal climate-driven model of a disease system would use a biological method that explicitly models 

the dynamics of both the vector and the pathogen. An precise evaluation of the correlations between climatic 

conditions and disease cycle parameters is required for successful deployment of such a model (Rogers and 

Randolph et al 2000). Ticks' development rate and overwinter survival rate are both accelerated by higher 

temperatures. The impact of global warming on leishmaniasis transmission using sandflies as vectors can also be 

seen. Sandflies are more active and take more blood meals at higher temperatures, which promote transmission. 

The development of leishmania parasites is also accelerated by rising temperatures. (Ready PD et al., 2010) As 

seen by the possible development of leishmaniasis in North America as a result of vector dissemination and 

expansion, the vectors spread into surrounding regions. (Gonzalez C et al., 2010.) Hantavirus infections are spread 

primarily by rodents. Warmer weather and lower snowfall decrease the protective environment given by snow, 

causing rodents to seek shelter in human homes, increasing hanta virus transmission, as witnessed in Scandinavia. 

(Evander M et al. 2009.) 

c) Rain fall patterns: Precipitation has an indirect effect on vectors. More mosquito breeding grounds are created as a 

result of increased precipitation. After heavy rains, the foliage becomes dense, providing refuge and resting sites 

for vectors. (Githeko AK et al. 2000.) Rift Valley fever outbreaks have been linked to periods of high rainfall. 

Aedes spp. are the most common mosquito vectors, and they transmit virus by transovarial transfer. They are 

floodwater breeders, and their eggs are laid during periods of heavy rain. Even during droughts, these eggs remain 

viable and hatch when the conditions are favorable again. If vertebrate reservoirs are present, heavy rainfall and 

larval development boost vector capacity, and epidemics ensue. Culex and Anopheles spp. can then act as 

secondary vectors in the outbreak's spread. Inter-epizootic intervals can range anywhere between 5 and 35 years. 

(Martine V et al. 2008.) East Africa is expected to see heavy rains, resulting in further Rift valley fever outbreaks. 

Climate change will have less of an impact on Rift valley fever in West Africa, and disease onset may be attributed 

to a reduction in herd immunity. (Chevalier V, et al 2004.) Increased rainfall generally results in more crops and 

food, which may contribute to a rise in rodent populations and rodent-borne zoonosis. Flooding raises the 

possibility of zoonosis spread by water. The cryptosporidium outbreak in Milwaukee, Wisconsin, may have been 

exacerbated by heavy rainfall upstream of water treatment plants (Mac Kenzie WR et al.1994).  Chikungunya and 

West Nile virus epidemics have been linked to severe rains and even droughts. Droughts reduce mosquito 

predators, resulting in an increase in vector abundance after the drought ends, and the concentration of reservoir 

hosts around watering holes makes disease transmission easier (Wang G et al.,2010.). 
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d) Soil condition:  

Tick development is influenced by soil moisture, with mortality linked to dry weather and soil evaporation. 

Hyalomma ticks, which transmit Crimean-Congo haemorrhagic disease, are, on the other hand, better adapted to 

surviving in dry conditions than other ticks.(Randolph SE et.,al 2008.) Bacillus anthracis spore distribution is 

determined by soil composition. For spore survival, humus-rich soils with high calcium and alkaline (pH>6.1) 

conditions are ideal. (Hugh-Jones et.,al 2009.) The presence of disease also necessitates the presence of susceptible 

vertebrate hosts as well as human variables. 

e) Ocean temperature, sea level and acidity:  

Sea level rise is also a worry as a result of rising sea temperatures and melting polar ice caps and glaciers. Coastal 

flooding and the risk of water-borne zoonoses will be exacerbated by rising sea levels. Carbon uptake by the 

oceans causes a drop in pH, putting marine ecosystems at risk. (Intergovernmental Panel on Climate Change 

2007.) 

f) Pathogen load:  

The growth of infections and disease burdens in arthropod vectors can be influenced significantly by temperature.  

(Gage et al. 2008; Sutherst 2004). Malaria parasites can only develop in mosquito vectors when temperatures are in 

a particular range. (Patz and Olson 2006). Similarly, the etiological agent of plague, Y. pestis, can only form and 

produce biofilm at temperatures below 28°C. Biofilm aids Y. pestis transmission by prompting infected fleas to 

increase their feeding attempts and vomit Y. pestis back into their hosts during eating. (Gage and Kosoy 2005; 

Jarrett et al. 2004). Temperature has an effect on the survival of Y. pestis, with many fleas clearing the infection 

when temperatures rise over 28°C. (Gage and Kosoy 2005; Hinnebusch et al. 1998). Recurrence of viral replication 

has been shown in human viral infections, and it is expected to occur in zoonotic host populations as well. (Halford 

et al. 1996; Mehta et al. 2004). Sin Nombre virus replication and shedding are occasionally identified in infected 

North American deer mice (Botten et al. 2003; Kuenzi et al. 2005). Although the mechanisms for viral replication 

reactivation remain unknown, stress-related immunosuppression has been proposed (Botten et al. 2002; Kuenzi et 

al. 2005). In hosts and vectors, the link between stress and pathogen transmission, replication, persistence, and 

shedding is poorly understood. A better knowledge of this link would allow for more precise forecasts of the 

consequences of climate change on the risk of vector born zoonotic disease infection in humans. 

g) Climate change with anthropogenic factor:  

Changes in reservoir and vector due to manic climatic variance provide novel ecological niches for vectors, 

affecting disease spread temporally and spatially. If climate change affects the prevalence of zoonotic and vector-

borne diseases by affecting non-human hosts, vectors, and pathogens, one of four basic processes is likely to be 

involved: Interaction effects between various components of climate change (e.g., temperature and precipitation) 

must be examined, just as interactions between climate change and other anthropogenic and natural factors must be 

studied to accurately forecast the influence of climate on vector born zoonotic diseases (Benedict et al. 2007). 

Human activities encourage host or vector range shifts by transferring hosts or vectors to new geographic areas, 

including new continents, as was the case in the United States with plague vectors and West Nile virus hosts. As a 

result of human migrations in reaction to climate change, some vector born zoonotic disease may become more 

vulnerable. Drought-related clustering of individuals near water supplies where sand fly vectors were concentrated, 

for example, was linked to an increase in leishmaniasis. Although Aedes aegypti, the major vector of Dengue virus, 

is anticipated to attain northward range expansions in the United States as winter temperatures become warmer, 

this may not result in dengue epidemics in the United States (Reiter et al. 2003). Many species' responses to 
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climate change will be influenced by anthropogenic ecological disturbance. As previously stated, as the 

temperature warms, many wildlife species and vectors' distributional ranges are expected to migrate pole ward and 

toward higher altitudes, potentially bringing hosts, vectors, and diseases now restricted to the tropics into the range 

of temperate population centers. During the transition from the last ice age to the current interglacial period, 

similar species movements occurred. However, not all species and populations will be able to relocate (Wright et 

al. 1993). Nonviolent creatures living on mountain tops or other habitat islands will be stranded. Similarly, 

localized foci of some vector borne diseases that rely on the continuing presence of specific hosts and vectors may 

vanish if both are restricted in their travel. Changing climate factors are connected with host and vector 

"responses," but this does not prove causation and effect. When movement of either is restricted, potential 

confounding variables like as behavioral changes, interspecific interactions, intrinsic population phenomena, 

anthropogenic causes, and evolutionary changes should be examined. (National Research Council 2001). 

h) Other extreme weather events: The El Nio-Southern Oscillation (ENSO) cycle is a global climatic phenomenon 

that alternates between hot and warm periods, contributing to more extreme weather events. (Kovats RS et 

al.2003.) Heavy rains and Rift Valley disease outbreaks have been linked to the ENSO in East Africa. (Gould EA 

et al. 2009.) In the Andes, fascioliasis is likely to be influenced by ENSO and global warming. (Mas-Coma S et al. 

2009.)The impact of global warming on the ENSO, on the other hand, is still uncertain. (McPhaden MJ et al. 

2006.) 

 

 

Figure1. Potential impact of global warming: 

 

 

 

 

 

Table 2: Some of the predicted climate change effects on these various forms of zoonosis. 

http://www.ijrar.org/


© 2022 IJRAR October 2022, Volume 9, Issue 4                           www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00027 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 698 
 

 

 

 

 

 

Disease  

 Some predicted changes  Reference  

Mosquito-borne  
  

West Nile virus infection  
A higher probability of infection  in 2025 

and further expansion in 2050  
Semenza et al., 2016 

Zoonoses transmitted by Aedes 

aegypti and Aedes albopictus 

(e.g., Dengue, Chikungunya, 

WNV, Zika, Yellow fever)  

Northward range expansion of suitable 

niches for Aedes aegypti and Aedes 

albopictus by 2100  

Khan et al., 2020  

Increase climatically favorable niches of 

Aedes albopictus throughout the 21st 

century  

Fischer et al., 2011  

Decrease climatic suitability of Aedes 

albopictus during the 21st century  
Fischer et al., 2011  

Dengue fever  

Increase the proportion of the global 

human population at risk of dengue 

transmission in 2085 50–60% of the 

estimated global population  in 2085 will 

be at risk of dengue transmission 

compared to 35% of the population  if 

climate change did not ensue  

Global Hales et al., 2002  

Dengue fever Increase the intensity and 

duration of dengue transmission during the 

21st century and increase of dengue 

epidemic potential by 2100  

Liu-Helmersson et al., 2016  

Malaria  

A rise in the number of days per year fit 

for malaria transmission by 2050 and 2100  
Casimiro et al., 2006 

Malaria 8–14% increased risk of local 

malaria transmission by 2050  
Kuhn et al., 2003  

Malaria Net increase in climate suitability, 

population at risk, and annual person-

months at risk from the 2050s to the 2080s  

Caminade et al., 2014 

Malaria Become climatically suitable for 

Plasmodium vivax malaria transmission for 

2 months per year by 2030  

Lindsay et al., 2010  
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Become climatically suitable for 

Plasmodium vivax malaria transmission 

for 4 months per year by 2030  

Lindsay et al., 2010 ,Thomas, 2001  

Sand fly-borne  
  

Leishmaniasis  

Northward expansion of areas with 

favorable climatic conditions  

(in Central and Northern Europe) for most 

vector species in 2061–2080  

Koch et al., 2017  

Leishmaniasis A 15% growth in the annual 

number of hospital admissions with the 

highest relative growth in the south regions 

by the end of the 21st century  

Mendes et al., 2016  

Tick-borne  
  

Lyme disease  

Expansion of vector Ixodes scapularis 

north into Canada with an upsurge of 

213% suitable habitat by the 2080s Shift 

the vector from the Southern United States 

into the Central  

Brownstein et al., 2005 

Lyme disease Begin disease season 0.4–

0.5 weeks earlier in 2025–2040 and Lyme 

disease Northward shift of the habitats of 

the white-footed mouse (a reservoir host) 

by 3◦ latitude by 2050  

Roy-Dufresne et al., 2013 

Tick-borne encephalitis  

Move to higher altitudes and latitudes 

along with the 3.8% overall habitat 

expansion for Ixodes ricinus by 2040–

2060  

Boeckmann and Joyner et al., 2014  

Blackfly-borne  
  

Onchocerciasis  
13–41% decrease of forest fly and 

savannah fly numbers by 2040 
Cheke et al., 2015  

Triatomine-borne  
  

Chagas disease Distributional 

shifts of vectors:  

Triatoma gerstaeckeri (north) and 

Triatoma sanguisuga (north and south) 

from its current range in 2050 

Garza et al., 2014  

Tsetse-borne  
  

African trypanosomiasis  

Decrease habitable range for vectors by up 

to 23.1% , 12.9% , and 22.8% of current 

habitable area by 2050  

Nnko et al., 2021  

Mite-borne  
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Scrub typhus  

Increase maximum disease incidence rate 

by 8%, areas of the high potential of 

incidence rate by 9%, and disease 

occurrence duration by 2 months  

Kim et al., 2020  

Waterborne  
  

Cryptosporidiosis and Giardiasis  

Increase the combined incidence of 

cryptosporidiosis and giardiasis in the wet 

season by 5.9% in the 2020s, 8.4% in the 

2040s, 12.1% in the 2060s, and 16.3% in 

the 2080s, compared to 1970–2000 period  

Chhetri et al., 2019  

Campylobacteriosis  

Increase the annual rates of reported cases 

with children most at risk and the highest 

expects in summer (e.g., an 8.4% increase 

in 2040 and a 19.5% increase in 2090 in 

children)  

McBride et al., 2014  

Schistosomiasis  

Increase infection risk by up to 20% over 

the next 20–50 years East Africa (Higher 

in Rwanda, Burundi 

Creesh et al., 2015 

Spread the disease farther north no 

endemic areas of China by 2050  
Zhou et al., 2008  

Foodborne  
  

Campylobacteriosis  

Doubling of campylobacter cases by the 

end of 2080s with an additional 6000 cases 

per year caused only by climate changes  

Kuhn et al., 2020  

Salmonellosis  

Increase of the mean annual number of 

temperature-related cases by ~20,000 by 

the 2020s in addition to increases by 

population changes 50% more 

temperature-related cases than based on 

population change alone by 2071–2100  

Watkiss and Hunt et al., 2012 
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Control and measures 

Raise awareness of the problem and take steps to prevent and manage it at the source- 

Veterinarians' principal responsibility has shifted away from controlling major conventional animal diseases and toward 

improving management, enhancing laws and regulations, and preventing and controlling animal diseases in order to 

promote animal and human health and assure food safety. Currently, there are two common misunderstandings. The first is 

the misconception that animal disease prevention and management is solely the duty of the agricultural department. The 

agriculture department is largely concerned with animal husbandry safety. However, zoonotic disease prevention has 

implications for public health, human health, and the global economy. 

Rodent-borne  
  

Plague  

1 ◦C degree increase in spring 

temperatures may result in a >50% 

increase in Y. pestis prevalence in its 

reservoir host  

Stenseth et al., 2006  

Plague Increase risk along the northern 

coast and Sierras while lower the risk in 

the southern regions by 2050  

Holt et al., 2009  

 

Plague Reduce periods of high plague 

activity in the Western United States and 

move to higher latitude and altitudes in 

coming decades  

Ari et al., 2008  

Plague Geographical shift of the disease 

with possible northward movement by 

2055. 

Nakazawa et al., 2007 

Hantavirus infection 

(Nephropathia epidemica)  

Increase risk of infection  Tersago et al., 2009  

Hantavirus pulmonary syndrome Increase 

incidence in coming decades  
Hjelle and Glass, 2000 

Airborne  
  

Highly pathogenic avian 

influenza  

Increase the risk of outbreaks in January 

and February months by the end of 2030  
Tian et al., 2015  

Increase the risk of outbreaks from April 

to June by the end of 2030 Northern Africa 

and Southern and Western Asia  

Tian et al., 2015  

Highly pathogenic avian influenza Higher 

risk of outbreaks in northern regions 

Global  

Herrick et al., 2013 
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Strengthen management and improve mechanisms- 

The prevention and control of zoonosis is a methodical endeavour that necessitates government-wide coordination and 

collaboration from a variety of sectors, specialties, and systems. Animal health and animal-derived food safety regulation 

tasks are dispersed throughout various departments, including the Ministry of Health. To develop an effective general 

health epidemic prevention system that is integrated with human medicine and veterinary medicine, these institutions must 

be centrally administered. It is also necessary to improve the training of skilled workers in relevant sectors. 

 

 Strengthen regulations and make a legal commitment to preventing and controlling zoonosis- 

It is proposed that the appropriate rules and regulations be further studied, developed, supplemented, and improved in order 

to prevent and control zoonosis at their source. The International Animal Health Code and general international standards, 

for example, can help strengthen rules and regulations. The Ministry of Health and Agriculture's epidemic reporting 

mechanism should be enhanced. From a legal standpoint, the prevention and control of zoonosis should be ensured. 

Create a baseline of information about the geographic and habitat distribution of identified zoonotic and vector-

borne pathogens, as well as their hosts and vectors- 

Accurate data on the present distribution of these agents, as well as their hosts and vectors, helps to determine current 

potential disease endemic areas and estimate relative risk across habitat types. These data are also required for establishing 

geographical changes in disease distribution as a result of climate change. Because pathogen distributions do not 

necessarily correspond to host and vector distributions (Mills and Childs 1998), research must include sampling hosts and 

vectors for pathogen presence in addition to recording host and vector presence or absence. Finally, because different 

infections are linked to genetically varied populations of hosts or vectors,(Mills and Childs 1998)Keep track of outbreaks 

of wildlife diseases in people, as well as their geographic spread, severity, and frequency. This is a different form of 

longitudinal monitoring programme, with a broader spectrum of diseases and hosts and more limited data collection. These 

data can be used to follow geographic and temporal patterns in the incidence of vector born diseases, identify vulnerable 

populations, and evaluate forecasting models. The Global Early Warning System for Major Animal Diseases, including 

Zoonosis, is one of several existing databases that provide valuable forms. Integration of such formats with the WHO 

networks' monitoring, data gathering, and data dissemination capabilities would result in a strong tool that would make 

geographic and incidence data immediately available to the public health professional, researchers, and modellers. 

Enhance relevant research in the interests of scientific prevention and control- 

To promote the implementation of advanced and practical scientific and technological achievements, top-level zoonosis 

research should be done at the national level. Studies of pathogen ecology and warning models should be done as part of 

fundamental research. Basic scientific challenges such as the source of high virus variability, the processes of cross-species 

transmission and multiple medication resistance, virus-host interaction, and pathogen traceability should all be 

investigated. The development of quick and high-throughput diagnostic reagents should be the focus of diagnostic 

technology research. 

Identification and characterisation of pathogens 

Although it is evident that understanding the diversity of tropical diseases is important, it has received little attention. 

Although conducting a comprehensive survey of potential pathogens in nature is a daunting task, a good place to start 

would be to identify the most likely potential hosts and vectors (e.g., bats and rodents, ticks and mosquitoes) and catalogue 

those pathogens with a history of causing disease in humans (e.g., viruses,  rickettsia, and some bacteria). 

Conduct laboratory and field experiments to see how climate change affects hosts and vectors, as well as their ability to 

retain and transmit infections. 

Laboratory and manipulative field experiments (Post et al. 2008) can be used to evaluate mechanisms of climate change 

effects on hosts, vectors, and diseases, as well as to develop hypotheses for field testing. Laboratory studies will be the best 

way to examine the impact of precise changes in temperature, humidity, or physiological stress on host, vector, or pathogen 
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populations because specific environmental parameters cannot be isolated and controlled in the field. Increased rates of 

transmission and viral recrudescence, as well as increases in pathogen burden in hanta virus hosts seen in field 

experiments, have been linked to stress-related immunosuppression. (Botten et al. 2003; Kuenzi et al. 2005) 

Develop prediction models of changes in zoonotic disease risk and the anticipated distribution and abundance of important 

hosts and vectors using data from laboratory and field investigations, epidemiological studies, and remote sensing. Such 

predictive models have been shown to be useful. In the south western United States, long-term direct monitoring of host 

population density and prevalence of hanta virus infection in North American deer mice offered early warning of an 

increased risk of HPS ( Yates et al. 2002). Rainfall and temperature data were utilised in models to identify high-risk 

locations for plague and HPS in the same geographic area (Eisen et al. 2007; Enscore et al. 2002; ) 

 

Conclusion:  

Animals are responsible for the bulk of human infectious diseases. Not only do these infections cause sickness in animals, 

but they also pose a serious threat to human health. Because of growing contact between humans and wild animals, altered 

eating habits, climate change, and ecologically unfriendly human operations all play a role in the origin and re-emergence 

of many zoonotic illnesses. The present COVID-19 epidemic demonstrates the terrible impact of zoonosis on the human 

population. Because animals, humans, and the environment are so intertwined, research concentrating on a single health 

strategy should be prioritised in order to discover important intervention steps in pathogen transmission. The goals of the 

actions outlined above are to form the multidisciplinary relationships required to conduct and interpret ecosystem-based 

studies of various diseases recorded as a result of climate change; identify the hosts, vectors, and pathogens with the 

greatest potential to affect human populations under climate change scenarios; and conduct studies that will increase our 

understanding of the potential mechanisms by which climate change occurs. The importance of these studies extends 

beyond the context of climate change. 
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