
© 2024 IJRAR May 2024, Volume 11, Issue 2                        www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00217 International Journal of Research and Analytical Reviews (IJRAR) 120 
 

Invariant relativistic theory of classical and 

quantum ideal gases 
 

M.R.Jumaev 

Bukhara Engineering Technological Institute, Uzbekistan, Bukhara, 

 

 

Abstract. The work presents an invariant relativistic theory of classical and quantum ideal gases subject to the 

relativistic distributions of Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein. Without applying the Gibbs 

canonical distribution method and the principle of maximum entropy, an alternative theory of ideal gases has been 

developed based on finding the macroscopic characteristics of classical and quantum ideal gases (particle number 

density, pressure and average energy) by statistical averaging over relativistic - invariant velocity distributions (for 

Maxwell-Boltzmann gas) and moments (for the Fermi-Dirac and Bose-Einstein gas). 

For the first time, expressions have been found for the average and root-mean-square particle velocities, which are 

valid for any ratio of thermal energy and rest energy of particles. For the first time, the limiting velocity of particle 

flows of quantum relativistic ideal gases has been determined. It has also been established that all real-life relativistic 

quantum ideal gases have adiabatic exponents that satisfy a certain fundamental inequality. 

 
I. Invariant relativistic theory of classical ideal gas 

 

Annotation. The purpose of this study is to develop an original theory of a relativistic ideal gas and to 

prove the validity of the postulate of the special theory of relativity for the characteristic (i.e., arithmetic mean, root-

mean-square) velocities of particles of a relativistic ideal gas even in the massless limit. In this work, the following 

original methods are used for the first time in the theory of a relativistic ideal gas: the method of nonlinear 

transformation to prove of the distribution function to find the distribution function of the velocities of particles of a 

relativistic ideal gas; the equation of state of a relativistic ideal gas was first obtained by averaging the relativistic - 

invariant components of the energy - momentum tensor of a system of noninteracting particles, i.e. ideal gas by the 

distribution function of the velocities of their particles.  The uniqueness and definiteness of the distribution function of 

the velocities of the particles of a relativistic ideal gas are proved on the basis of the well-known relativistic invariance 

of the distribution function. For the first time, expressions were obtained for the arithmetic mean and mean square 

velocities of particles of a relativistic ideal gas. For the first time, a fundamental conclusion is made about the validity 

of the postulates of the special theory of relativity for the characteristic velocities of particles of a relativistic ideal gas. 

An equation of state for a relativistic ideal gas is obtained, which relates its pressure, average energy density and 

temperature.  

 

Keywords: distribution function, relativistic ideal gas, arithmetic mean and mean square velocity, equation of state, 

massless limit. 

 

Introduction 
In the last twenty years, especially on the eve of the celebration of the centenary of the creation of the special 

theory of relativity by the great A. Einstein, interest in the problems of relativistic statistical physics has sharply 

increased (see, eg, [1,2] and the literature cited in these works). Naturally, this is due to the need to solve a number of 

problems in plasma physics [3], relativistic kinetic theory [4,5], super - nonequilibrium relativistic thermodynamics in 

subatomic physics [6]. 

It should be noted that such questions arose immediately after the construction of the special theory of relativity. 

Planck and other classics of physics noted that the Maxwellian distribution of velocities contradicts the fundamental 

postulate of relativity - according to which the speed of particles is limited by the speed of light in emptiness - the 

limiting speed in nature [7]. 
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The history of generalization of the Maxwellian velocity distribution for the relativistic case lasts more than a 

hundred years [2,5,7-11]. As the analysis of the literature on this topic shows, the first work in this direction was 

published by F. Juttner [12]. Despite the fact that the Juttner velocity distribution was the correct relativistic 

generalization of the Maxwellian velocity distribution (which we will prove below), there is still a serious debate 

about its correctness and the search for various "modifications" of the Juttner velocity distribution continues. Even in 

the work of recent years [2, 7], continue to obtain, in the language of their authors, curiously surprising results in this 

regard. 

Therefore, we have to admit (although this seems unlikely) that the problem formulated at the beginning of the 

twentieth century remains unsolved. Those no work has proved the validity of the fundamental postulate of the special 

theory of relativity for the velocities of particles of a relativistic ideal gas. It is clear that for this it is necessary to find 

the distribution function of the particle velocity of a relativistic ideal gas and, on its basis, to determine the expressions 

for the characteristic velocities of the particles of a relativistic ideal gas. And then, by passing to the limit, prove that 

even in the massless limit, these speeds do not exceed the limiting speed in nature. 

Another important issue of relativistic statistical physics, as is known, is the derivation of the equation of state for 

a relativistic ideal gas [7-11] - which establishes a relationship between the pressure, average energy density and 

temperature of a relativistic ideal gas. In the existing literature, the equation of state for a relativistic ideal gas is 

obtained thermodynamically [1,4,5,7-12], namely, on the basis of a relativistic generalization of the expression for the 

free energy or the Gibbs partition function (through which all thermodynamic quantities describing the states of an 

ideal gas [13, 14]). In our work, we present a new derivation of the equation of state for a relativistic ideal gas by an 

original method, namely, on the basis of averaging the temporal and spatial components of the energy tensor - 

momentum of a system of noninteracting relativistic (structureless) particles over the velocity distribution function of 

particles of a relativistic ideal gas. In the context of the problem under consideration, this method seems to us more 

expedient - a direct method and corresponds to the spirit of Maxwell's own works [15]. Consequently, the proposed 

theory is a relativistic generalization of the Maxwellian theory of an ideal gas and goes over to the latter in the 

nonrelativistic limit. 

In accordance with the above, the article is organized as follows. In the first section, the distribution function of 

the particle velocity of a relativistic ideal gas is found using the method of transformation. In the second section, 

formulas for the mean and root-mean-square velocity of particles of a relativistic ideal gas are obtained. The form of 

the distribution function of the particle velocity of a relativistic ideal gas in the ultra - relativistic limit is also found 

here in the case of massless particles (massless particl's). The third section is devoted to a new derivation of the 

equation of state for a relativistic ideal gas - by averaging macroscopic quantities over the distribution function of the 

particle velocity of a relativistic ideal gas. In the conclusion, the main conclusions of the proposed theory are 

presented, as well as their possible applications in high energy physics and relativistic cosmology. 

 

1.1. The distribution function of the particle velocity of a relativistic ideal gas 

 

We will begin the presentation of the proposed theory of a relativistic ideal gas by finding the distribution 

function of the particle velocity of this gas, since it plays a key role in any statistical system [13-15] and, in particular, 

in the theory of an ideal gas of relativistic particles [1-12]. Figuratively speaking, the distribution function is the 

cornerstone of kinetic theory. 

Note that the desired velocity distribution function can be found in various ways: as a stationary equilibrium 

solution of the relativistic kinetic Boltzmann equation [2, 4, 5]; based on the principle of maximum entropy [8-11]. 

Without discussing here the methods used (they are discussed in more detail in the above literature) and without 

diminishing the value of these works, we propose the simplest way to determine the velocity distribution function - 

using the method of transforming the distribution function (see, for example, [18]). 

According to this method, on the basis of the known distribution function of the moment of the particles of a 

relativistic ideal gas 𝑓(Р⃗⃗ ) = 𝑓(Р𝑥 , Р𝑦, Р𝑧), we must determine the distribution function of the velocity of particles of a 

relativistic ideal gas𝜑(𝑣 ) = 𝜑(𝑣𝑥 , 𝑣𝑦, 𝑣𝑧).Here: Рх, Рy, Pzandυx, υy, υz  are the components of moments and velocities 

of particles along the corresponding axes x, y, z. Then, based on the method of transformation, we easily obtain the 

following relation. Using the transition from the moment of particles to their velocities, we obtain: 

                              zyxzyxzyxzyx dvdvdvDvvvdPdPdPPPPf ,,,,    .                    (1) 

Here D is the transformation determinant defined by the following expression 
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Note that the determinant of the transformation 𝐷 ≡
𝜕(𝑃𝑥,𝑃𝑦,𝑃𝑧)

𝜕(𝑣𝑥,𝑣𝑦,𝑣𝑧)
will be unique and the same for any type of 

DF𝑓(𝑃⃗ )(the form of which we specify below). 

Here: zyx PPP ,,  is defined according to the special theory of relativity by the following expressions: 

                        .,
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Now, taking into account the expression D1, D2 and D3 (9), we obtain that 
2

321  DDD . 

The determinant of the transformation D from pulses zyx PPP ,,  to velocities zyx vvv ,,  is finally determined by the 

following expression [2, 24, 25]: 
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Note that the found determinant of the transformation D from momenta to velocity remains valid for an arbitrary 

distribution function of momenta of particles of a relativistic ideal gas. In particular, for quantum relativistic ideal 

gases, the particles of which obey, as is well known to the statistics of Fermi-Dirac and Bose-Einstein [19]. 

Before proceeding to the definition of the distribution function of the velocities of the particles of a relativistic 

ideal gas, I would like to bring the following transformation of the elementary volume from the space of momenta to 

the space of velocities (which follows from (1): 

                                                   zyxzyx dvdvDdvdPdPdP                                                   (5) 

Hence, in particular, it follows that 

                                                    dvDvdPP 22                                                        (6) which is easy to 

verify, given that 
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Now let us determine the distribution function of the velocity of particles of a relativistic ideal gas using the 

Boltzmann distribution for the momenta of particles of a relativistic ideal gas [18]: 
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where E0 = mc2is the rest energy of a gas particle, kТ is thermal energy, B is a constant, which is determined, as 

always, by the normalization condition for the distribution function, will be found below. 

Further, taking into account that the momentum of a relativistic particle 𝑃⃗  is related to its velocity 𝑣  in a 

nonlinear manner, according to expression (3) 
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based on the DF of the moments (8) 𝑓(𝑃⃗ ) (14), we find the distribution function of the velocity vector of the 

particles of the relativistic ideal gas 
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Therefore, the probability that the speed lies in the interval  vdvv


,  or that, the same - the components of the 

velocity in the interval    
yyyxxx dvvvdvvv  ,,,  and  zzz dvvv ,  is determined according to (10) as 

follows 

                                  
zyxzyx dvdvdvvvvdW ,, .                                           (11) 

Finally, in the conclusion of the section, we find the distribution function of the modulus of particle velocities 

based on the formula for transforming the distribution function from  pf


 to  vf


 (1) and formula (6), taking into 

account expressions (3) and (10): 
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Thus, the distribution function of the velocity modulus of particles of a relativistic ideal gas is determined by the 

following expression 
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Further, introducing the normalized particle velocity 
c

v
u  , we can find on the basis of (13) the reduced 

distribution function of the modulus of the normalized particle velocity  uF  
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Here 
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Now we find the constant B using the normalization condition for the distribution function of the velocity moduli 

of particles of a relativistic ideal gas  vF  
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Therefore, the constant B according to (14) - (16) is determined by the expression 
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Thus, the reduced distribution function of the moduli of the normalized velocities of particles of a relativistic 

ideal gas can be written in the following compact form: 
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The distribution function of the velocity modulus of particles of an ideal gas found by us can be used to calculate 

the cross section for collisions of particles in a relativistic ideal gas [20] and the cross section for reactions of 

ultrarelativistic particles in subatomic physics [6]. It may be of interest in studies of the relativistic ionization of atoms 

by high-energy gas particles, as well as in the field of relativistic laser spectroscopy. 

At the end of the section, we present a proof of the invariance of the particle velocity distribution functions of a 

relativistic ideal gas. 

The proof given here of the derivation of the velocity distribution function of particles of a relativistic ideal gas 

MB is final. This follows from the fact that the relativistic Boltzman distribution function for moments is relativistic 

invariant. Indeed, taking into account that the four-dimensional momentum of gas particles is 

𝑃𝑖 = 𝑚𝑣𝑖 = 𝑚(
𝑐

√1 −
𝑣2

𝑐2

,
𝑣

√1 −
𝑣2

𝑐2

) 

and the four-dimensional velocity of the rest coordinate system (V = 0) is 

𝑉𝑖 = (𝑐, 0) 

we get that 

𝑃𝑖𝑉
𝑖 =

𝑚𝑐2

√1−
𝑣2

𝑐2

= √(𝑚𝑐2)2 + 𝑃2𝑐2 

Since the scalar product of any four-dimensional vectors is invariant, any equilibrium distribution possesses 

this property. 

Obviously, the total probability 
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∫𝑓(𝑃1, 𝑃2, 𝑃3)𝑑𝑃1𝑑𝑃2𝑑𝑃3 = 1 

does not depend on the transformation of the distribution function, which was used to find the relativistic velocity 

distribution function. 

Let us assume that the momentum distribution function of particles of a relativistic ideal gas (8) is invariant if 

next relation is invariant 

𝑖0
𝑇0
=
𝑖

𝑇
 

Here 𝑖0 = 𝑖 = 𝑃𝑖𝑉
𝑖 — according to the above, it is an invariant-as a scalar product of the vectors 𝑃𝑖 and 𝑉𝑖 

and, as is known, does not change under Lorentz transformations. 

Hence, we get that the condition T0=T must be fulfilled, i.e. the temperature of the RIG is the same in all Inertial 

System Frame (ISF). 

Thus, the main drawback of the existing non-invariant RIG theories is eliminated, according to which, during 

Lorentz transformations, both the DF and the macroscopic characteristics of the RIG change – which contradicts the 

invariance of the laws of nature in all ISF. 

Summarizing the above, we will come to the fundamental conclusion that during the transition from one ISF to 

another, the statistical properties of the RIG do not change: neither the velocity distribution function nor the equation 

of state of the RIG do not change under Lorentz transformations, i.e. they are invariant in all ISF. Naturally, this also 

holds true for quantum RIG. 

1.2. Characteristic velocities of particles of a relativistic ideal gas 

 

Based on the distribution function of the velocity module of particles of a relativistic ideal gas found in the 

previous section, it is possible to find any macroscopic characteristic of this gas depending on the velocity based on 

the formula for calculating the mean 

 
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The quantity included in this expression, as is known, gives the probability of finding the particle velocity 

modulus in the velocity interval  dvvv ,  

dvvFdW )( .     (19) 

Then, using the explicit form of the relativistic velocity distribution )(vF  (19) and the definition of the function 

)(u  (17), we obtain the following expression to find the above mentioned probability 
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Here )(u  is the reduced distribution function of the modulus of the normalized particle velocities determined 

according to (17), by the formula 

Ф(𝑢) =
𝑑𝑊

𝑑𝑈
=

𝑏

𝑘2
𝑢2(1 − 𝑢2)−

5
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1
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However, according to the Maxwell distribution, which is obtained from the relativistic distribution (13) in the 

limit 2mckТ  and cv  , i.e. in the nonrelativistic approximation, the probability that the modulus of the 

particle's velocity belongs in the velocity range  dvvv ,  is determined by the expression [15] 

   duuduuudvvFdW MM  22 exp
4

)(


.   (22) 

Here u is the particle velocity normalized to the most probable velocity 𝑣𝑚𝑝 = √
2𝑘𝑇

𝑚
 i.e. 𝑢 =

𝑣

𝑣𝑚𝑝
. Comparing the 

relativistic distribution function )(u  with the Maxwellian distribution function  uM , we come to the conclusion 

that, unlike the latter, the first distribution cannot be represented in a single universal form for all gases. The reason for 

this difference, as can be seen from the comparison of the two distributions, is the presence of the parameter b in the 

relativistic distribution, which is equal to the ratio of the rest energy of gas particles to the thermal energy kТ. In 

particular, as we will prove below, it is this circumstance that leads to the fact that for a relativistic ideal gas the law of 

uniform distribution of the average kinetic energy over the degrees of freedom does not hold. Attention was drawn to 

this, for example, in Pauli's book [21]. 
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The unusualness of the relativistic distribution function (or what, the same thing, the relativistic distribution) 

)(u  makes us be more attentive to this attractive person (it is clear that such people are extremely rare, if not 

completely!). Of course, we are primarily interested in, as in the case of the Maxwellian distribution, the characteristic 

velocities of the relativistic distribution, namely: the most probable, mean and root-mean-square velocities of particles 

of a relativistic ideal gas. 

The most probable particle velocity corresponds to the maximum of the relativistic velocity distribution function 

)(vF  or the relativistic distribution function )(u . It is determined by the extremum condition 
 

0
dv

vdF
, which is 

equivalent to condition 
 

0


du

ud
. Calculating this derivative and making a number of simplifications, we obtain the 

following equation 
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Further, taking into account that for the values of the parameter b other than zero: 0)(  u at 0u and 1u , 

we come to the conclusion that these values of the velocities correspond to the zeros of the relativistic distribution. 

In addition to these roots, equation (23) also has intermediate roots, as follows from it, determined by the solution 

of the following equation  

222 1)32( uubu  .     (24) 

We further restrict ourselves to analyzing its solutions only for very large and very small values of the parameter 

b 1. 

As follows from equation (24), for any finite values of b, its roots belong to the interval of normalized velocities 

10  u . 

For 1u , which corresponds to nonrelativistic particles, from (24) we obtain that if 1b  or 2mcкТ  , 

it has the following approximate solution 
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Therefore, as expected, in this nonrelativistic limit we obtain a result following from the Maxwellian distribution 

of  vFM
 or  uM  - which is valid in this case. 

Now we find a solution to equation (24) close to the limiting one, i.e.  101  u . Then it follows from 

this equation that 

50
1

2b
u  .      (26) 

This solution corresponds to very small values of the parameter 1b , which means an ultrarelativistic limit. 

Further, taking into account the asymptotic behavior of the modified second-order Bessel function  
22

2

b
bк  , 

according to (21), we come to the conclusion that the maximum of DF )(u  is described by the following expression 

2

2

b
макс  .     (27) 

Therefore, in contrast to the Maxwell distribution  uM  (22), which has a maximum at 𝑢𝑚𝑝 = 1 at any value 

of b, the relativistic distribution )(u  (21) has a maximum value depending on the parameter b. In particular, at 

1b , according to (27), the maximum of this distribution grows, i.e. the relative number of particles grows with 

velocities close to the limiting 1u . However, as is known, the maximum of the Maxwellian distribution 𝐹𝑀(𝑣) 
decreases with increasing temperature, i.e. tends to zero at very high temperatures. This is the main difference between 

the relativistic distribution 𝐹(𝑣)and the Maxwellian distribution 𝐹𝑀(𝑣)! 
We now turn to determining the average velocity of particles of a relativistic ideal gas. According to the formula 

for calculating the means (18), we obtain that 

  

C

ucduuucdvvvFv
0

1

0

)()( .   (28) 

Using expression (28), we obtain the following formula for the average velocity of particles of a relativistic ideal 

gas [2, 24, 25]: 

                                                           
1We will not give general solutions to this equation because of its cumbersomeness. 
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.     (29) 

In a similar way, we determine the mean square of the velocity again using the formula for calculating the means 

(18), according to which 

  

1

0

222

0

222 )( ucduuucdvvFvv

C

.  (30) 

Using (21) and (30), we obtain the following formula for the mean square of the normalized velocity of particles 

of a relativistic ideal gas [2, 24, 25] 

b
bk

bkibk
u

)(

)()(
1

2

112 
 .     (31) 

The found expressions for the mean modulus and the mean square of the modulus of the normalized particle 

velocity (38), (39) allow us to determine another most important characteristic of the relativistic distribution (27) - the 

root-mean-square fluctuation of the velocity of gas particles: 

DucuucvvDv 222222 ][  ,   (32) 

which describes the characteristic spread of the velocities of particles of a relativistic ideal gas. 

Now let us analyze the behavior of the found characteristic velocities for a very large value of the parameter b, 

i.e. 1b . In this case, as already noted, the thermal energykT is much less than the rest energy of the particles 2mc

. Further, taking into account the asymptotics of )(1 bk  and )(1 bki  [22]: 
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in the considered limit, we obtain 
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Now recalling the asymptotics of the modified second-order Bessel function )(2 bk  






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on the basis of expressions (30), (35), (36) we obtain the following formula for the mean square of the velocity of 

ideal gas particles 

  m
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
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This is a result following from the Maxwellian distribution for the mean square of the particle velocity in the 

nonrelativistic limit. 

In the same limit, in accordance with expressions (28), (29), and (36), we obtain 

m

кТ

b
cv 



812
2 .     (38) 

This is the formula for the average velocity of the Maxwellian distribution. Thus, within the framework of the 

applicability of the Maxwellian distribution, the root-mean-square fluctuation of the velocities of particles of an ideal 

gas according to (32), (37), and (38) is determined by the following expression 

m

kТ

b
cDucDv 




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.   (39) 

Finally, consider the case of ultrarelativistic (or massless) particles, which corresponds to very small values of the 

parameter b, i.e. 1b  (or 0b ). Then, taking into account the asymptotics of the functions )(1 bk , )(2 bk and 

)(1 bki  in this limit [22] 

,
2

)(,
2

)(,
1

)( 1221


 bki

b
bk

b
bk     (40) 

we obtain from (29) and (31) the following results 

222

2

1
1,1 bubu  .    (41) 
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The latest results mean that as m → 0, these characteristic speeds tend to the speed of light c. 

Consequently, in the ultrarelativistic limit, the root-mean-square fluctuation of the velocities of particles of an 

ideal gas is determined by the following formula 
2

2
2222

2

3

2

3




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


кТ

mc
cbcDucDv .    (42) 

Thus, in this section, on the basis of the relativistic distribution of velocities (19), it is proved that the 

characteristic velocities of gas particles: the most probable, mean and root-mean-square velocities do not exceed the 

speed of light. In particular, taking into account the unattainability of absolute zero temperature, proved by Nernst, we 

come to the conclusion that only massless particles at any temperature have speeds equal to the speed of light. In 

addition, it is possible to show the boundedness of the root-mean-square fluctuations of particle velocities for any 

value of the parameter b. 

Concluding the section, we note that these qualitative considerations in obtaining solution (24) can be easily 

obtained by finding the values of b corresponding to the most probable velocities 𝑢𝑚𝑝 =
𝑣𝑚𝑝

𝑐
 which are determined as 

follows: 

.1
2

3 2

2
u

u
b 




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


  

From here, for 1u and  101  u , we obtain approximate solutions (25) and (26) of equation 

(24). 

Based on the above analyzes, we come to the conclusion that in the massless limit all characteristic particle 

velocities tend to the speed of light. In other words, the distribution function of the velocity modulus of particles of an 

ultrarelativistic ideal gas becomes delta-shaped  )()(0 cF   , and their directions are completely random and 

equally probable, i.e. distributed isotropically. 

Indeed, the relativistic distribution function of the normalized velocity Ф (u) at b << 1 takes the following form 

.)1(exp)1(
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22
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Further, setting 22 1 u ),0(  , we obtain 

).exp(
2

)(
5

3



bb
uФ   

Hence it is clear that if ,b  then at 0  the function Ф (u) tends exponentially to zero. If ,2

3

b  then 

at 0b Ф (u) becomes infinite. Therefore, in this case, the reduced distribution function will be delta-shaped, i.e. 

)1()( uuФ   (fig. 1). 

Thus, based on the analysis of the expressions for the characteristic velocities of the particles of a relativistic 

ideal gas, we come to the fundamental conclusion that the most probable average and root-mean-square velocity does 

not exceed the speed of light - the limiting velocity in nature. This proves the validity of the postulates of the special 

theory of relativity in relativistic statistical physics. 
 

 

Figure: 1. The distribution function of the moduli of the normalized velocities of the particles of a 

relativistic ideal gas (b = 1.5; 1; 0.2) 

 

As an example, we find the root-mean-square velocity of the particles of a relativistic ideal gas at the value of the 

parameter, when the thermal energy is equal to one third of the rest energy of the gas particle. 

Using formula (31) and taking into account the values of the special functions appearing in it, we obtain 
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.515.02 cкв    

However, according to Maxwell's formula for the mean square velocity (37) скв  . This result has no physical 

meaning, since, according to the special theory of relativity, no particle with a nonzero mass can have a speed equal to 

the speed of light. The latter conclusion also follows from the relativistic distribution function of the particle velocity 

modulus found by us: if 0m , then at c  the function 0)( F . 

 

1.3. Equation of state for a relativistic ideal gas 

As is known, the properties of any ideal gas are determined by its equation of state, which connects three 

thermodynamic quantities: pressure, average energy density and temperature [13,23]. Therefore, our goal in this 

section is to determine the equation of state for a relativistic ideal gas. 

Before proceeding with the direct solution of this problem, we give a short proof of expressions for the average 

energy density and pressure of a relativistic ideal gas. To do this, we use the following well-known expression for the 

energy-momentum tensor of a system of noninteracting particles [23]: 


dS

dx

dt

dx
nmcТ

ki
ik

, 𝑑𝑆 = 𝑐√1 −
𝑣2

𝑐2
𝑑𝑡.   (43) 

wheren is the number of particles per unit volume, and the angle brackets denote averaging over the velocity 

distribution function of gas particles. 

Further, taking into account the definitions of the four-dimensional radius vector of the particle ix  

  ),(),,,(,,, 3210  rсtzyxctxxxxxi
,   (44) 

we find the following expressions necessary to find 
ikТ : 
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where
v  is the usual three-dimensional particle velocity. 

Therefore, using expressions (43) - (46), one can determine any component of the energy-momentum tensor 
ikТ  of a 

system of noninteracting particles, for example, 
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where zyx ,, . 

Hence it follows that the time component of the energy-momentum tensor 
00Т  is equal to the average energy 

density  of the relativistic ideal gas, determined by the expression 
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Now, using the spatial components of the energy-momentum tensor, we obtain that 
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However, for any isotropic distribution of particle velocities (otherwise it cannot be due to the equality of all 

directions in space) 

PТТТ zzyyxx  ,     (49) 

Thus, from (47*) and (49) we obtain the following expression for the pressure of a relativistic ideal gas: 
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We emphasize that we did not cite here the expressions for the mixed components of the energy-momentum 

tensor 
ikТ  when i and k are not equal, simply because they are all equal to zero. 

Now using the identity 
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v
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u
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u
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
,
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1

1

2

2
2

2
,    (51) 

and taking into account expressions (48) and (50), we obtain the following important equality, which establishes 

a relationship between the pressure P and the average energy density   of a relativistic ideal gas 


2

2
2 13

c

v
nmcP .    (52) 

Thus, as follows from the expressions for the average energy density   (48) and pressure P (50), as well as the 

equation of state (52) connecting them, they are all determined by statistical averaging based on the relativistic 

distribution of the velocities of their particles )(vF  (13). This is the originality of the method used by us for the first 

time for finding the indicated macroscopic quantities of a relativistic ideal gas. 

Let's start solving this problem by determining the average energy density of a relativistic ideal gas based on 

expressions (48) and (13): 
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Now, applying the substitution )0(  xthxu  and taking into account expression )(u  (21), we obtain 
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The integrals included in (54) are respectively equal [22] 
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where )(1 bk  and )(2 bk  are the modified Bessel functions of the first and second order. 

Thus, for the average energy density  of a relativistic ideal gas, we obtain the following beautiful expression 
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Next, we calculate the right-hand side of equality (52) 
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Now, taking into account the first integral in expression (55), from this we obtain 
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Substituting the found mean in the right-hand side of equality (52), we find the following expression for the 

pressure of the Maxwell-Boltzmann relativistic ideal gas 

nkТP  .      (59) 

Of course, this result can also be obtained by direct averaging of the expression for pressure (50). However, now, 

unlike the nonrelativistic ideal gas theory, the pressure of a relativistic ideal gas will not be directly proportional to the 

average kinetic energy of gas particles 〈Е𝑘〉, since, according to (56) 
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is a nonlinear function of the thermal energy kT and the rest energy of the gas particle mc2. In particular 
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Using this formula, by measuring kE  and T, you can determine the rest energy of gas particles mc2 in a non-

trivial way. 

Thus, the equation of state of a relativistic ideal gas connecting its pressure, average energy density and 

temperature is determined by the following expression 
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We emphasize that the above results can be obtained by other statistical methods, which were mentioned at the 

beginning of the first section. 

Let us now investigate the asymptotic behavior of the pressure and average energy density of a relativistic ideal 

gas at the limiting values of the parameter b. 

If the thermal energy kT is negligible compared to the rest energy of the gas particles 2mc , then the parameter 

1b . Further, taking into account the asymptotics of the functions )(1 bk  and )(2 bk  (36), we have 
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Then it follows from (56) that in this limit the mean energy density is determined by the following formula 

nkTnmc
2

32  .     (62) 

Consequently, only for a nonrelativistic ideal gas, the law on the uniform distribution of the average kinetic 

energy over the degrees of freedom is valid, i.e. 

кТEk
2

3
 .     (63) 

In the opposite limit 1b  (which means not only Т , but also 0m !), The modified Bessel functions 

of the first and second order have the asymptotics indicated in expression (40). Then from (56) we obtain the 

following formula for the average energy density of an ultrarelativistic ideal gas (or a relativistic gas of massless 

particles) 
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In this limit, from (60) follows the so-called limiting equation of state 

3


P ,      (65) 

which corresponds to the highest possible pressure at a given average energy density  . 

Based on the above analyzes of the equation of state (60) relating pressure, average energy density and 

temperature of a relativistic ideal gas, we can write the following approximate equations of state: 

,0P
3


Р ,      (66) 

usually used in the equations of motion of matter (matter and radiation) in cosmological theories [23].  

Here, the first equation of state corresponds to a nonrelativistic gas with an ultralow temperature ( 0Т ), the 

second - to an ultrarelativistic gas with a very high temperature ( 0Т ) or equilibrium radiation. These approximate 

equations of state used are virtually independent of temperature. Therefore, based on the analysis of the equation of 

motion of matter, where the equations of state are used, which does not take into account the dependence of pressure 

and average energy density on temperature, it is impossible, in principle, to determine the change in the temperature of 

the Universe during its evolution. An additional argument in favor of this conclusion is the fact that the very 

establishment of the equilibrium Boltzmann distribution and the resulting relativistic distribution of the velocities of 

gas particles is possible only in statistical equilibrium, with a constant temperature in time. 

In conclusion, we emphasize that the pressure and average energy density of a relativistic ideal gas take only non-

negative values according to their physical meaning. This conclusion remains valid for quantum relativistic ideal 

gases, since the expressions for the pressure (50) and average energy density (48) of a relativistic ideal gas, as well as 

the equation of state (52) connecting them, remain valid in the case of quantum statistics. Only averaging follows, it is 

carried out over the distribution function of the momenta of quantum relativistic ideal gases [24-26]. 

Thus, no substance can have negative pressure and negative average energy density. This excludes the possibility 

of the existence of the supposed "dark" matter with such hypothetical properties. 

 

Conclusion 

Let us summarize the consequences of the proposed theory of a relativistic ideal gas, compare them with 

previously known results, and also discuss issues of their further development. 

The presentation will be carried out in accordance with the sequence of the issues considered in the article. 

1. The distribution function of the particle velocity of a relativistic ideal gas, obtained by us by transforming the 

distribution function, which is described by expression (13), agrees with the result of Juttner's work [12], obtained by 

him on the basis of a relativistic generalization of the Gibbs statistic. The “modified” Juttner distribution of velocities 

obtained in [7] is incorrect, since, according to the authors themselves, it contains a factor - the reciprocal of the 
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energy of a relativistic particle. This leads to the erroneous conclusion that in the ultra - relativistic limit the 

"Modified" Juttner distribution of velocities tends to zero. This contradicts the result (27) and does not correspond to 

reality (see also a number of curious results given in [7]). 

2. The formulas describing the mean and root-mean-square velocity of particles of a relativistic ideal gas were not 

obtained by either Juttner or his "modifiers". Consequently, for the first time in our work, it was proved on their basis 

that the characteristic velocities of particles of a relativistic ideal gas are limited - the limiting velocity in nature. This 

confirms the validity of the fundamental postulate of the special theory of relativity in relativistic statistical physics. 

3. The equation of state of a relativistic ideal gas, relating the pressure, average energy density and temperature of 

a relativistic ideal gas described by expressions (56), (59) and (60), agrees with the results obtained by Juttner [12], as 

well as other researchers [4, 5, 8-11, 16, 17]. But unlike these works, in which thermodynamic methods were used to 

obtain the equation of state (based on free energy, the principle of maximum entropy, etc.), here it was obtained by a 

new method, namely, by averaging macroscopic quantities for a system of relativistic non-interacting particles, i.e., e. 

for a relativistic ideal gas from the distribution function of the velocity of their particles. As far as we know, no one 

has previously used such a method for obtaining the equation of state for a relativistic ideal gas. 

It is of great interest to generalize the theory of a relativistic ideal gas developed above for reference frames moving 

with constant acceleration [16], as well as for relativistic plasma of colliding beams [3]. 

4. Analysis of limit case  

A. Substantially Nonrelativistic Ideal Gas 𝑏 =
𝑚𝑐2

𝑘𝑇
≫ 1. 

In this limit, it should be taken into account that 
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B. Ultra-relativistic limit. 

𝑏 =
𝑚𝑐2

𝑘𝑇
≪ 1 (or b→0). Then, taking into account the asymptotics of the function in this limit k2(b), we obtain 

𝑘2(𝑏) ≈
2
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. 

In addition it should be taken into account that 

𝐸 ≈ 𝑝𝑐. 

Therefore, we have 

𝑓(𝑝) ≈
1

8𝜋
∙ (
𝑐

𝑘𝑇
)
3

∙ exp⁡(−
𝑝𝑐

𝑘𝑇
) 

Hence it follows that if      𝑇 → 0, 𝑓(𝑝) → 𝛿(𝑝). 

C. Of the effective cross section of colliding particles 

𝜎

𝜎𝑚𝑎𝑥
=< √(𝑢1⃗⃗⃗⃗ − 𝑢2⃗⃗⃗⃗ )

2 − [𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ ]
2 > 

Here 𝑢1,2 =
𝑢1,2

𝑐
. 𝑢1,2⁡— normalized velocities colliding particles of RIG. 

Further, the case is considered when, for example, u2=0. Then, the previous formula is greatly simplified. 
𝜎

𝜎𝑚𝑎𝑥
=< 𝑢 > 

Consequently, for parameter values significantly less than one, i.e. for the UR particles, for example, at b=10-3 (which 

was possible in experiments on particle collisions at CERN, as well as in experiments in Controlled Nuclear Fussion 

in France), we obtain according to the formula for the average velocity Maxwellian distribution 

〈𝑢〉 ≈ 2√
2

𝜋
∙ 102. 

This result obviously has no physical meaning, since it means that the speed of particles exceeds the speed of light 100 

times. 

But at the same time, according to the formula for the average RIG speed, in this limit we get 

〈𝑢〉 = 1 − 𝑏2 = 1 − 10−6 

Consequently, according to the latest results, the effective cross-section of colliding particles of a relativistic 

ideal gas cannot exceed the effective cross-section of a stationary particle. I.e., starting from a certain threshold 

energy, the effective cross-section practically does not depend on the average kinetic energy of colliding particles, 

which is confirmed by experiments conducted at CERN. 
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As an application of the theory of a relativistic ideal gas, one can point out its possible application for calculating 

the cross section for collisions of ultra - relativistic heavy ions in a high energy collider [27], as well as for the 

relativistic kinetic description of the production of fermions and bosons in cosmology. 

Completing the work, we cannot but pay attention to, perhaps - not very pleasant and annoying, strange 

circumstance that has developed in the history of the theory of a relativistic ideal gas: for more than a century after 

Juttner's work [12], they were engaged in an essentially meaningless business - they tried "Modify" ... the correct 

Juttner velocity distribution! Here, as they say, there is nothing to be done - this is the nature of things. But the truth, 

although it is bitter, is always fair ... 
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II. Invariant relativistic theory of quantum ideal gas 

 

Annotation. An original invariant relativistic theory of a quantum ideal gas (QIG) of particles, antiparticles, 

and photons is presented, in which the macroscopic characteristics and the QIG equation of state are determined for 

the first time on the basis of quantum averaging over the invariant particle momentum distribution function of a 

relativistic QIG. The condition for the condensation of a relativistic Bose gas is found. Based on it, a relativistic 

quantum gas model of the Universe is also proposed. The maximum limiting velocity of the QRIG particle flows is 

determined. In addition, it has been proved that fermions with zero rest mass cannot exist. Otherwise, it turns out that 

the gas pressure becomes negative, which is not satisfied by any substance known so far. Therefore, the only particle 

with zero rest mass is the photon. It also ensures the stability of the gaseous Universe, preventing its expansion in 

space. The latter is due to the fact that the particle flow rate even in a photon gas, i.e. in a bosonic gas of massless 

particles, is less than the speed of sound due to the fact that the photon gas at any absolute temperatures other than 

zero has an adiabatic index 𝛾𝑝ℎ >
4

3
, which provides the condition 𝑣 < 𝑐. It is shown that the particle flow rate of the 

RQIG cannot exceed 𝑣𝑝ℎ < 𝑣𝑠.𝑚𝑎𝑥. Here: 𝑣𝑝ℎ and 𝑣𝑠.𝑚𝑎𝑥are, respectively, the speed of the flow of photon gas 

particles and the maximum speed of sound. It has been established that the adiabatic indices of the actually existing 

RQIG satisfy the fundamental inequality 𝛾 ≥ 𝛾𝑝ℎ >
4

3
, which ensures non-negativity of the pressure and subsonic 

velocity of their particle flows.  

Keywords: Relativistic quantum ideal gas (RQIG), macroscopic characteristics and equation of state of 

RQIG, condition for condensation of a relativistic Bose gas, relativistic quantum gas model of the Universe, maximum 

boundary velocity of QRIG particle flows, stability of the gaseous Universe. 

Introduction 

After analyzing the literature of the first two decades of our century, we inevitably come, as one of the 

"luminaries" of science (whose name does not matter in this case) "to an unsightly picture of the state of the 

relativistic theory of QIG ...". 

This means that there are still a number of fundamental issues that have not yet been resolved. Indisputable 

striking examples of the latter conclusion are the three (?!) laws of temperature transformation during the transition to 

a moving inertial frame of reference (IFR) [1-3]. 

But this point of view, whoever did not express it, contradicts invariance, i.e. immutability of the laws of 

nature in IFR. 

In the context under discussion, this means that the statistical nature of the system should be the same in all 

IFRs, i.e. the distribution function (DF) of the momenta of QIG particles must be invariant, i.e. the same for all 

observers moving at a constant speed. Otherwise, due to the “transformation” of the DF, the macroscopic 

characteristics of the QIG change (n- is the average density of the number of particles, ρ- is the average energy 

density, P- is the pressure), as well as the equation of state of the QIG, which are determined by averaging on its basis. 

The relativistic invariant theory (RIT) of a quantum ideal gas (QIG) presented in this article is, in essence, a 

logical continuation and completion of the relativistic invariant theory of a classical ideal gas or the so-called 

Maxwell-Boltzmann ideal gas [4-9]. As was proved in [4], the DF of RIG particles, as well as the absolute 

temperature of RIG, is invariant, i.e. the same in all IFRs. Consequently, as it should be, the macroscopic 

characteristics and the RIG equation of state connecting them are invariant, regardless of the method of averaging, i.e. 

based on classical or quantum statistics. 

Note that, at the same time, there is still a relativistic theory of QIG in the so-called absolutely synchronous 

IFR or in an accompanying (i.e., associated with relic radiation) IFR [10-13]. But this obviously leads to the existence 

of a "separate" IRF, which violates the equality of the IFR and, naturally, contradicts the invariance of the special 

theory of relativity (STR). It seems to us not reasonable and not consistent with common sense that "the difference in 

IFR leads to an observable effect" - a conclusion made by a number of authors. The situation is further aggravated by 

the fact that the so-called Ito-Stratonovich-Klimontovich-Hangi paradox has not been resolved; there are three 

different solutions (?!) of the same Fokker-Planck equation for the DF on momentum or DF of velocities [14]. But the 

issue of violation of the uniqueness of the solution of the Fokker-Planck equation requires a special study and will not 

be considered here. The situation of continuing “modifications” of the Juttner distribution and work in this direction is 

discouraging [13-20]. 

Summarizing the above, we can now formulate the goal of this work: to develop an invariant relativistic 

theory of the QIG of particles, antiparticles and photons, which takes into account the possibility of the creation and 

annihilation of particles, and also to determine the velocity of the flow of QRIG particles on its basis. 
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Based on the formulation of the question, the presented theory will be presented in the following logical 

sequence: in the first section, the Maxwell-Boltzmann model of the relativistic QIG is considered, which is auxiliary, 

but very necessary for understanding the theory presented below. In the second section, we obtain general expressions 

for the macroscopic characteristics and equations of state for the RQIG of Bose and Fermi particles in the form of a 

summable series. In the third section, the properties of the RQIG of bosons are investigated. In the fourth section, the 

features of the behavior of the RQIG of fermions are studied. In the fifth section, a formula is defined that allows one 

to calculate the maximum flow rate of QRIG particles. This section also analyzes the physical consequences arising 

from the first law of relativistic thermodynamics for adiabatic processes and the laws of conservation of particle flux, 

as well as the equation of state. In it, in particular, it is proved that no other particles with zero rest mass can exist, 

except for the only Bose particle, the photon. It is shown that otherwise, i.e. in the presence of a Fermi particle with 

zero rest mass, we obtain results that have no physical meaning and do not correspond to the equations of state of 

substances known to physics. The final part of the article summarizes the results obtained, their comparison with the 

available literature, as well as their possible applications and prospects for their further development. 

 

Macroscopic characteristics of RQIG. 

We begin our presentation by generalizing the definition of the macroscopic characteristics of the RQIG to the 

case of averaging over quantum statistics. 

To do this, we proceed from the fact that, according to our previous works [4-9], the average energy density 

and pressure of the RIG are determined by the following expressions: 

𝜌

𝑛
= 〈

𝑚𝑐2

√1−
𝑣2

𝑐2

〉      (1) 

𝑝

𝑛
=

1

3
〈
𝑣2

𝑐2
𝑚𝑐2

√1−
𝑣2

𝑐2

〉.     (2) 

Here 𝑚𝑐2⁡is the rest energy of gas particles, and the angle brackets mean averaging over the velocity 

distribution function (VDF) of QIG particles, n is the number density of particles. 

Next, we take into account that, according to the rules of quantum averaging, the number of particles per unit 

volume, i.e. the number density of particles having momenta in the interval p, p+dp is equal to 

𝑑𝑛𝑝 =
𝑔

ℎ3
𝑓(𝑝)4𝜋𝑝2𝑑𝑝.    (3) 

Therefore, the average particle number density of any  QRIG is determined by the following integral 

expression 

𝑛 =
4𝜋𝑔

ℎ3
∫ 𝑝2𝑓(𝑝)𝑑𝑝
∞

0
.    (4) 

Here f(p) is the invariant DF of QRIG particles, and g is the spin degree of freedom of QIG particles. 

Now, passing in expressions (1)-(2) from velocities to momenta of relativistic particles 

𝐸 =
𝑚𝑐2

√1−
𝑣2

𝑐2

= √𝐸0
2 + 𝑝2𝑐2, 𝑣 =

𝑑𝐸

𝑑𝑝
= 𝑐

𝑝𝑐

𝐸(𝑝)
   (5) 

we obtain that the average energy density and the pressure of the QRIG are determined, respectively, by the 

following expressions: 

                                                                𝜌 =
4𝜋𝑔

ℎ3
∫ 𝐸(𝑝)𝑓(𝑝)𝑝2𝑑𝑝
∞

0
,               (6) 

                                                          𝑝 =
4𝜋𝑔

3ℎ3
∫

𝑝2𝑐2

𝐸(𝑝)
𝑓(𝑝)𝑝2𝑑𝑝

∞

0
.                                 (7) 

In particular, from expressions (6) and (7) we obtain the following relationship between the average energy 

density and pressure, i.e. equation of state QRIG: 

                                                            𝜌 − 3𝑝 =
4𝜋𝑔

ℎ3
(𝑚𝑐2)2 ∫

𝑓(𝑝)

𝐸(𝑝)
𝑝2𝑑𝑝

∞

0
.        (8) 

Hence, we obtain the following fundamental conclusion: the QRIG pressure cannot exceed one third of the average 

QRIG energy density, i.e., 

                                                                            𝜌 − 3𝑝 ≥ 0.     (9) 

Note that the equal sign takes place only for massless QRIGs. 

As follows from the above basic position of the invariant relativistic theory of QIG, for the first time we 

determine the macroscopic characteristics, as well as the equation of state of the QRIG by a purely quantum-statistical 

method – based on averaging over the DF of the particles of the QIG – the invariance of which was proved in [4-5]. In 

the proposed theory, neither the method of the maximum entropy principle nor the method of thermodynamic 

potentials is used anywhere. We emphasize that we find all macroscopic characteristics (n, ρ, P) and the equation of 
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state of the RQIG based on the integrals (4), (6)–(8), considering them to be a function of the chemical potential μ and 

the absolute temperature T. 

The most important distinguishing feature of the proposed new theory is that it is relativistic invariant. Those 

the absolute temperature and the macroscopic characteristics of the QRIG determined by it - the average particle 

number density, average energy density, pressure, as well as the QRIG equation of state connecting them - are the 

same in all inertial frames of reference, as it should be according to the requirement of the invariance of the laws of 

nature. 

However, the existing theories of RQIG are non-invariant, i.e. contradict the principle of relativity for two 

reasons: 

1) temperature is converted according to three rules [1-3]; 

2) there are "isolated" reference systems [10-12], and this violates the equality of IFR. 

Thus, we are talking about a fundamental difference between the proposed invariant relativistic QIG theory 

and the existing non-invariant relativistic QIG theories, according to which the statistical nature of particles changes 

upon transition to another IFR. The last statement contradicts the principle of relativity, i.e. invariance of the laws of 

nature, which cannot be eliminated by any "compromise". 

Concluding the section, we present the form of the relativistic invariant DF on momentum of QIG particles 

                                                    𝑓(𝑝) = [𝑒𝑥𝑝
𝐸(𝑝)−𝜇

𝑘𝑇
− 𝜀]

−1
.       (11) 

Here E(p) is the energy of the RQIG particle, defined by expression (5), kT is the thermal energy, μ is the 

chemical potential, ε is the statistics index of the QIG particles, which takes the values 0, 1, -1, respectively, for the 

distribution of Maxwell-Boltzmann, Bose- Einstein and Fermi-Dirac. Note that the relativistic invariance of the 

distribution function and absolute temperature was proved in our paper [4] for the case of classical statistics. 

Obviously, it remains valid for quantum statistics, in which only the method of averaging changes. 

 

2.1 Maxwell-Boltzmann model of a relativistic quantum ideal gas 

Let's start studying the properties of the RQIG from the simplest case - from the so-called Maxwell-

Boltzmann model of the RQIG. We note right away that, according to quantum mechanics, spin less particles do not 

exist in nature: particles with integer spins obey Bose statistics, and particles with half-integer spins obey Fermi 

statistics. 

However, this model is useful in that it allows, in many practically important cases that we encounter, to 

accurately describe the statistical properties of free ones, i.e., not located in an external field, non-interacting 

structureless systems, i.e. point, relativistic particles, i.e. ideal gases. 

As noted above, for "spinless" particles ε=0, i.e. we have the Maxwell-Boltzmann distribution, which has the 

following form 

                                                       𝑓𝑀𝐵 = 𝑒𝑥𝑝 [−
𝐸(𝑝)−𝜇

𝑘𝑇
].    (12) 

Further, using the general expressions for macroscopic quantities (4), (6) - (7), as well as the equation of state 

(8) connecting them, we find by averaging based on the relativistic invariant distribution function of Maxwell-

Boltzmann the desired characteristics of the QRIG MB. 

Let us start with the determination of the average density of the numbers of RQIG particles n, which is 

expressed in the case under consideration by the following integral 

                                       𝑛 =
𝑔0

ℎ3
4𝜋𝑒

𝜇

𝑘𝑇∫ 𝑝2𝑒𝑥𝑝 [−
√𝐸0

2+𝑝2𝑐2

𝑘𝑇
]𝑑𝑝

∞

0

.   (13) 

As can be seen from the expression for the energy of a relativistic particle, if we use the relation 

𝑝 = 𝑚𝑐 𝑠ℎ 𝑥,     (14) 

then the energy can be written as 

𝐸 = 𝑚𝑐2 𝑐ℎ 𝑥,     (15) 

which greatly simplify the calculation of the integral (13). 

Taking these transformations into account, we obtain 

𝑛 =
𝑔0

ℎ3
(𝑚𝑐)34𝜋𝑒

𝜇

𝑘𝑇 ∫ sh2 𝑥 𝑐ℎ 𝑥 𝑒−𝑏 𝑐ℎ𝑥 ⁡𝑑𝑥
∞

0
, 𝑏 =

𝑚𝑐2

𝑘𝑇
.  (16) 

 

 The integral appearing here is expressed by a modified Bessel function of the 2nd order and is equal to 
𝑘2(𝑏)

𝑏
. 

 Therefore, the average particle number density of the MB RQIG is determined by the following relation 
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                                                             𝑛 =
𝑔0

ℎ3
(𝑚𝑐)34𝜋⁡

𝑘2(𝑏)

𝑏
𝑒
𝜇

𝑘𝑇.       (17) 

Here 𝑔0 = 1, since we are considering "spinless" particles, b is the ratio of the rest energy of the particle 

RQIG and the thermal energy kT. 

 Note that the found expression for n makes it possible to determine the chemical potential μ for an arbitrary 

value of the parameter b, which can vary from zero to infinity in subatomic, i.e., intra-nucleon systems, in electron-ion 

relativistic plasma, as well as in the so-called quark-gluon plasma [20-38]: 

𝜇 = 𝑘𝑇 ln 𝑥,  𝑥 =
𝑛

𝑔0
ℎ3
4𝜋(𝑚𝑐)3⁡

𝑘2(𝑏)

𝑏

.    (18) 

 It follows that the chemical potential is positive for x>1 and negative for x<1. It takes on a zero value at x=1, 

i.e. in this case  

𝑛 = 4𝜋⁡𝑔0 (
𝑚𝑐

ℎ
)
3 𝑘2(𝑏)

𝑏
.     (19) 

 Note that the thermodynamic potential method (which we do not use) [11] gives exactly the same result, 

according to which 

𝜇 =
𝜕𝐹

𝜕𝑛
≡ 𝑘𝑇 ln 𝑥,     (20) 

where F - is the thermodynamic potential, also called free energy. 

Proceeding in a similar way, we obtain the following expressions for the average energy density and pressure 

of the RQIG MB: 

𝜌 = 4𝜋⁡
𝑔0

ℎ3
(𝑚𝑐)3(𝑚𝑐2)𝑒

𝜇

𝑘𝑇 [
𝑘1(𝑏)

𝑏
+ 3

𝑘2(𝑏)

𝑏2
],  (21) 

𝑝 = 4𝜋⁡
𝑔0

ℎ3
(𝑚𝑐)3(𝑚𝑐2)𝑒

𝜇

𝑘𝑇
𝑘2(𝑏)

𝑏2
.   (22) 

To find these results, it suffices to take into account that [24] 

𝑘𝑛(𝑏) =
𝑏𝑛

(2𝑛 − 1)‼
∫ sh2𝑛 𝑥 𝑒−𝑏𝑐ℎ 𝑥𝑑𝑥⁡

∞

0

= 

=
𝑏𝑛−1

(2𝑛−3)‼
∫ sh2(𝑛−1) 𝑥 𝑐ℎ 𝑥 𝑒−𝑏𝑐ℎ 𝑥𝑑𝑥⁡
∞

0
.   (23) 

Here 𝑘𝑛 (b) are modified Bessel functions of the nth order (n = 0, 1, 2, …). 

Finally, we find the following equation of state based on relation (8): 

𝜌 − 3𝑝 = 4𝜋
𝑔0

ℎ3
(𝑚𝑐)3(𝑚𝑐2)𝑒

𝜇

𝑘𝑇
𝑘1(𝑏)

𝑏
.   (24) 

 From the obtained exact expressions for the macroscopic characteristics and the equation of state connecting 

them, the following relations follow: 

                                                           

𝑝

𝑛
= 𝑘𝑇,

𝜌

𝑛
= 𝑚𝑐2 [

𝑘1(𝑏)

𝑘2(𝑏)
+
3

𝑏
] ,

𝑝

𝜌
=

1

3+𝑏
𝑘1(𝑏)

𝑘2(𝑏)

.
}
 
 

 
 

                   (25) 

 We will need expressions (25) in the future when studying the issue of the maximum velocity of the flow of 

QRIG particles. Note that these relations exactly coincide with our results obtained in [4], where they were derived on 

the basis of averaging classical statistics. 

First, we study the behavior of the chemical potential and the average density of particles in the essentially 

nonrelativistic limit, i.e. for 𝑘𝑇 ≪𝑚𝑐2, as well as in the ultrarelativistic limit, i.e. for 𝑚𝑐2 ≪𝑘𝑇 (or for m→0, i.e., in 

the massless limit). To do this, we take into account the asymptotics of 𝑘2(𝑏) with b≫1 and b≪1 (or b→0): 

𝑘2(𝑏) ≈ √
𝜋

2𝑏
𝑒−𝑏 (1 +

15

8𝑏
+⋯)⁡⁡⁡⁡(b ≫ 1)

𝑘2(𝑏) ≈
2

𝑏2
⁡⁡⁡⁡(b ≪ 1)

   (31) 

Then using (18), we get for b≫1: 

𝜇

𝑘𝑇
≈ ln

𝑛

𝑔0
ℎ3
(𝑚𝑐)34𝜋

1

𝑏
√
𝜋

2𝑏

+
𝑚𝑐2

𝑘𝑇
,    (32) 

or, transforming the expression under the sign of the logarithm, we have 

𝜇−𝑚𝑐2

𝑘𝑇
= ln

𝑛

𝑔04𝜋√
𝜋

2
(
√𝑚𝑘𝑇

ℎ
)
3.    (33) 

 Hence, if the chemical potential μ is equal to the rest energy 𝑚𝑐2, i.e. for 𝜇 = 𝑚𝑐2, it follows 
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𝑛 = 𝑔04𝜋√
𝜋

2
(
√𝑚𝑘𝑇

ℎ
)
3

.    (34) 

In the ultrarelativistic limit, we have 
𝜇

𝑘𝑇
= ln

𝑛

𝑔04𝜋(
𝑘𝑇

ℎс
)
3
∙2

.     (35) 

 From the last expression at zero chemical potential, i.e. for μ=0 we have 

𝑛 = 𝑔04𝜋 (
𝑘𝑇

ℎс
)
3
∙ 2.     (36) 

Thus, the Maxwell-Boltzmann model of the RQIG gives a correct idea of the asymptotic behavior of the chemical 

potentials and the average particle number density both in the essentially nonrelativistic and in the ultrarelativistic 

limit [see the following sections of the article]. 

 

Properties of RQIG of bose and fermi particles. 

 

 Now let's move on to studying the properties of the RQIG of particles that obey relativistic invariant 

momentum distribution functions - Bose-Einstein and Fermi-Dirac. To do this, we must first determine their 

macroscopic characteristics, as well as the equations of state connecting them based on quantum averaging over the 

general distribution (11) at ε=1, -1. 

 To achieve this goal, we will use the following non-trivial integration method to determine n, ρ and p, namely: 

we multiply the numerators and denominators of the integrands by exp [−
𝐸(𝑝)−𝜇

𝑘𝑇
]and consider the fraction 

1

1−𝜀 exp[−
𝐸(𝑝)−𝜇

𝑘𝑇
]
 as the sum of an infinitely decreasing geometric progression with denominator⁡𝑞 = 𝜀 exp [−

𝐸(𝑝)−𝜇

𝑘𝑇
]. 

Obviously, the sum under consideration will be convergent only under the condition |q|<1.  

Then, taking into account the integral expressions for macroscopic quantities (4), (6)–(7), we obtain the following 

general relations: 

  

1) Average particle number density of RQIG 

2) 𝑛 =
𝑔1,−1

ℎ3
4𝜋 ∫ 𝑑𝑝⁡𝑝2𝑒−

𝐸(𝑝)−𝜇

𝑘𝑇 ∑ 𝑒−𝑛
𝐸(𝑝)−𝜇

𝑘𝑇∞
𝑛=0 𝑞𝑛

∞

0
= 

=
𝑔1,−1

ℎ3
4𝜋∑ ∫ 𝑑𝑝⁡𝑝2𝜀𝑛 exp [−(𝑛 + 1)

𝐸(𝑝)−𝜇

𝑘𝑇
]

∞

0
∞
𝑛=0 .         (37) 

 Here 𝑔1,−1 -is the number of spin degrees of freedom for Bose and Fermi particles; ε=1, -1 - respectively for 

the distribution of BE and FD. 

 Further, using transformations (14)-(15), as well as the result (23), we obtain the following general integral 

relation for determining the average density of the numbers of particles of the RQIG of Bose and Fermi particles. 

                                           𝑛 = 4𝜋𝑔1,−1 (
𝑚𝑐

ℎ
)
3
∑ 𝜀𝑛∞
𝑛=0

𝑘2[(𝑛+1)𝑏]

(𝑛+1)𝑏
𝑒(𝑛+1)𝑎.               (38) 

 Here: 𝑎 =
𝜇

𝑘𝑇
, 𝑏 =

𝑚𝑐2

𝑘𝑇
. 

2) Proceeding in a completely similar way and using the general expressions for the macroscopic characteristics 

of the RQIG (6)-(7), taking into account the sum (37), we obtain: 

𝜌 = 4𝜋𝑔1,−1 (
𝑚𝑐

ℎ
)
3
(𝑚𝑐2)∑ 𝜀𝑛𝑒(𝑛+1)𝑎 {

𝑘1[(𝑛+1)𝑏]

(𝑛+1)𝑏
+ 3

𝑘2[(𝑛+1)𝑏]

(𝑛+1)2𝑏2
}∞

𝑛=0 , (39) 

𝑝 = 4𝜋𝑔1,−1 (
𝑚𝑐

ℎ
)
3
(𝑚𝑐2)∑ 𝜀𝑛𝑒(𝑛+1)𝑎

𝑘2[(𝑛+1)𝑏]

(𝑛+1)2𝑏2
∞
𝑛=0 .  (40) 

3) And finally, from the expressions for the average energy density ρ and pressure p, we find the following 

equation of state for the RQIG of Bose and Fermi particles, which relates them, based on (8): 

𝜌 − 3𝑝 = 4𝜋𝑔1,−1 (
𝑚𝑐

ℎ
)
3
(𝑚𝑐2)∑ 𝜀𝑛𝑒(𝑛+1)𝑎

𝑘1[(𝑛+1)𝑏]

(𝑛+1)𝑏
∞
𝑛=0 .  (41) 

 Thus, we managed to obtain general expressions for determining the macroscopic characteristics (n, ρ, p), as 

well as the equation of state (41), which are valid for any values of the parameters a and b, naturally satisfying the 

summation condition of the above series. 

Now, following the logic of things, we study the properties of the RQIG of Bose and Fermi particles separately. 
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2.2 "Special" relativistic quantum ideal gas of Bose particles with integer spins 

 

 The “special” behavior of QIG Bose particles is well known, and in particular, their surprising property is 

the accumulation of particles, i.e. condensation, not only at zero momentum, but also with a finite momentum value, 

continues to be one of the topical problems of modern physics: the Bose-Einstein condensation of the RQIG, the 

condensation of rotons in a superfluid liquid [25-27].  

 However, the experimental results obtained recently - on the multiple production of particles by ultrahigh 

energies in the CERN Large Hadron Collider, the detection of electron-positron relativistic cosmic ray plasma, 

controlled inertial thermonuclear fusion [29, 30], [35-38], were put on the agenda day a number of questions awaiting 

their decision. One of these issues is, in our opinion, the study of the properties of RQIG in systems where the ratio of 

thermal energy and rest energy of a gas particle can vary from zero to infinity (these are the so-called subnucleon 

systems), and the chemical potential can take on the value, figuratively speaking, from minus to plus infinity. In such 

cases, of course, it is required to obtain expressions for the macroscopic characteristics of the RQIG for arbitrary 

values of the parameters 𝑎 = 𝜇 𝑘𝑇⁄ , 𝑏 = 𝑚𝑐2 𝑘𝑇⁄ . Here μ is the chemical potential, 𝑚𝑐2 - is the rest energy of a gas 

particle, 𝑘𝑇 - is the thermal energy. 

Further, we take into account that the Bose-Einstein distribution describes the quantum statistics of particles 

with integer spins, which corresponds to ε=1 in (11), i.e. 

𝑓𝐵𝐸 =
1

𝑒𝑥𝑝[
𝐸(𝑝)−𝜇

𝑘𝑇
]−1

.     (42) 

 Hence it follows that the number of particles is not negative, at any momentum, even at 𝑝 = 0, the chemical 

potential must satisfy the condition 𝜇 < 𝑚𝑐2. In addition, when 𝐸(𝑝) = 𝜇, a “singularity” appears in the Bose-

Einstein distribution, i.e. the denominator of expression (42) vanishes. Therefore, the case 𝐸(𝑝) → 𝜇 requires its 

investigation with allowance for the ESE asymptotics near this “critical” point. 

Thus, while the condition 𝜇 < 𝑚𝑐2 is assumed to be satisfied, from (38) we obtain: 

𝑛 = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
∑

𝑘2[(𝑛+1)𝑏]

(𝑛+1)𝑏
𝑒(𝑛+1)𝑎∞

𝑛=0 .   (43) 

It follows from the last expression that the average number density of particles in the RQIG BE is determined 

by the absolute temperature T and the chemical potential μ. 

Let us first consider the essentially nonrelativistic limit, which, as shown above, corresponds to very large 

values of the parameter b, i.e. b>>1 (or b→∞) 

𝑘𝑇 ≪ 𝑚𝑐2.     (44) 

Further, recalling the asymptotics of the modified 2nd order Bessel function (31) from (43), we obtain the 

following expression: 

                                     𝑛 = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
∑ √

𝜋

2

𝑒(𝑛+1)(𝑎−𝑏)

√(𝑛+1)𝑏(𝑛+1)𝑏

∞
𝑛=0 .                        (45) 

It follows from this that if the condition a=b is satisfied, i.e. 

 

𝜇(𝑇𝑐) = 𝑚𝑐
2,     (46) 

then we get 

                                          𝑛 = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3

√
𝜋

2

1

𝑏
3
2⁄
∑

1

(𝑛+1)
3
2⁄

∞
𝑛=0 .                               (47) 

 Further, taking into account that the last sum is equal to 𝜉 (
3

2
)  (here 𝜉(𝑥) - is the Riemann zeta function) and 

transforming (47), i.e., setting 𝑏 =
𝑚𝑐2

𝑘𝑇
, we have the following condition for the critical particle number density of the 

RQIG BE: 

 𝑛𝑐 = (
√𝑚𝑘𝑇𝑐

ℎ
)
3

4𝜋𝑔1√
𝜋

2
𝜉 (

3

2
).    (48) 

 Now, returning to the remark made at the beginning, when 𝐸(𝑝) → 𝜇 = 𝑚𝑐2, we see that this corresponds to 

the asymptotic behavior of ultrasmall particle momenta in the BE distribution. In other words, it is the accumulation of 

particles in the macrostate with zero momentum, and 𝑛𝑐represents the number of condensed particles with zero 

momentum . 
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Therefore, we will come to the conclusion that the condition for particle condensation is 𝜇(𝑇𝑐) = 𝑚𝑐
2, and not μ=0, 

as it should be. We will verify below that the zero chemical potential corresponds to the ultrarelativistic limit, i.e. 

μ≪kT. 

Indeed, for very small values of the parameter b, i.e. for b≪1 (or b→0), taking into account the second part of 

expression (31), as well as (43), we obtain (𝑘𝑇 ≫ 𝑚𝑐2 or m→0!): 

                                     𝑛 = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
2∑

1

(𝑛+1)𝑏3
𝑒(𝑛+1)𝑎

∞

𝑛=0
.                   (49) 

 It follows that the condition 𝐸(𝑝) → 𝜇 = 𝑚𝑐2 in the massless limit means zero chemical potential, i.e. μ=0. 

Then from (49) we have 

𝑛𝐵𝐸 = 4𝜋𝑔12𝜉(3) (
𝑘𝑇

ℎ𝑐
)
3
.    (50) 

 The latter corresponds to the total number of bosons with zero mass, since in this case the momentum value 

p=0 is assumed by the particles with zero probability. Note that the last result differs significantly from 𝑛𝑐 BEC, since 

the latter corresponds to condensation at ultralow temperatures. We emphasize that the expression for the particle 

number density of ultrarelativistic Bose gases (50) was previously obtained on the basis of the Gibbs canonical 

distribution [25] and is consistent with our result (see also [26, 27, 31, 34]). 

And the general case, when the ratios of the chemical potential and rest energy to thermal energy are finite, i.e. 

intermediate values, and the chemical potential is less than (or within the limit equal to) the rest energy, as far as we 

know, has not been considered in the literature. 

As for the case 𝜇 > 𝑚𝑐2, which is possible only for a Fermi gas, the integrals involved in finding the 

macroscopic characteristics of the QRIG FD diverge. As is well known, they will be finite in the limit of absolute 

temperatures tending to zero (see, for example, Molinari [28]), which are of no interest in the context of the problem 

under consideration. 

To obtain the Einstein result, we write the exponent in the BE distribution in the following identical form, 

following Molinari [28], 

𝐸−𝜇

𝑘𝑇
≡

(𝐸−𝑚𝑐2)−(𝜇−𝑚𝑐2)

𝑘𝑇
. 

Then the 1st term will mean the kinetic energy of the relativistic particle, and the 2nd term expresses the 

“shifted” chemical potential by the rest energy of the particle, i.e. 𝜇′ = 𝜇 −𝑚𝑐2. If we now consider the essentially 

nonrelativistic limit (𝑘𝑇 ≪ 𝑚𝑐2  and 𝑝 ≪ 𝑚𝑐), which adequately describes the BEC at ultralow temperatures tending 

to zero, the result (48) first obtained by Einstein follows exactly. 

 Therefore, the last results are consequences of the condition 𝐸(𝑝) → 𝜇 = 𝑚𝑐2, respectively in the essentially 

nonrelativistic and ultrarelativistic limit. 

Thus, the conclusion: “for a Bose gas, the chemical potential must be 𝜇 ≤ 0 at an arbitrary temperature” [25] 

is incorrect from a physical point of view. In fact, at any temperature it is necessary to satisfy the condition 

𝜇 ≤ 𝑚𝑐2,      (51) 

which ensures non-negativity and limitation of the average number density of particles of the RQIG BE. In addition, 

as expressions (48) and (51) show, at temperatures tending to absolute zero, the average number of particles with 

nonzero momentum tends to zero. In other words, at T→0 all Bose particles accumulate in a state with zero 

momentum, i.e. form the so-called pure condensate, and there are no above condensate Bose particles. 

 Using the expressions found above for macroscopic characteristics (n, ρ, p), as well as the equation of state 

connecting them, we can find them for arbitrary values of the parameters a ≤ 𝑏, since according to (51) 𝜇 ≤ 𝑚𝑐2. For 

example, in works [27], [31], these parameters changed in the following intervals: 0,1 ≤ 𝑎 ≤ 1, 0,1 ≤ 𝑏 ≤ 10. 

Naturally, in numerical simulation, the study of the case 𝑏 ≫ 1  and 𝑏 ≪ 1is obviously difficult. This is due to the fact 

that in limiting cases, i.e. for 𝑏 ≫ 1  and 𝑏 ≪ 1 (or b→0), it is necessary to sum up the entire series appearing in the 

expressions for the macroscopic characteristics of the Bose gas. The latter seems to be irrational from the point of 

view of numerical calculation. In such "subtle" cases, it is reasonable to find them analytically, as demonstrated above 

(see also below). However, we restrict ourselves to the study of the case ⁡𝜇 → 0, i.e. behavior of a massless 

ultrarelativistic Bose gas at arbitrary temperatures. 

Since in the limit b→0, p=ρ/3, it suffices to find one of them. We then find the average energy density of the 

QRIG BE in the ultrarelativistic limit. To do this, we use expression (39) and take into account that for very small 

values of the parameter b, i.e. at b≪1 (or b→0) 

𝑘1(𝑏) ≈
1

𝑏
; 𝑘2(𝑏) ≈

2

𝑏2
.     (52) 

Further, assuming 𝜇 = 𝑚𝑐2 → 0, we get: 
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𝜌 = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
(𝑚𝑐2) {

1

𝑏2
∑

1

𝑘2
∞
𝑘=1 +

6

𝑏4
∑

1

𝑘4
∞
𝑘=1 }.   (53) 

But as known [24]: 

∑
1

𝑘𝑠
∞
𝑘=1 = 𝜉(𝑠).     (54) 

Thus, passing to the limit b→0, we find 

𝜌𝐵𝐸 = 24𝜋𝑔1 (
𝑘𝑇

ℎ𝑐
)
3
(𝑘𝑇)𝜉(4).    (55) 

Therefore, the average internal energy of one ultrarelativistic Bose particle is 

𝑢В𝐸 =
𝜌

𝑛
=

3𝜉(4)

𝜉(3)
𝑘𝑇.    (56) 

At the same time, for the ultrarelativistic QIG MB, according to (25) 

𝑢МВ =
𝜌

𝑛
= 3𝑘𝑇.     (57) 

2.3  Relativistic quantum ideal gas of fermi particles with half-integer spins 

Now let's consider some properties of the RQIG whose particles obey the Fermi-Dirac distribution, which has 

the following form 

                                                𝑓𝐵𝐸 =
1

𝑒𝑥𝑝[
𝐸(𝑝)−𝜇

𝑘𝑇
]+1

.                   (58) 

Further, for definiteness, we restrict ourselves to the study of macroscopic characteristics and the equation of 

state of the RQIG of Fermi particles at temperatures not equal to absolute zero. In addition, we believe that, as in the 

case of the RQIG BE, the inequality 

𝜇 ≤ 𝑚𝑐2.     (59) 

Then in the essentially nonrelativistic limit, i.e. when 𝑘𝑇 ≪ 𝑚𝑐2 for the average particle number density of 

the RQIG FD we obtain the following expression 

                                          𝑛 = 4𝜋𝑔−1 (
𝑚𝑐

ℎ
)
3 1

𝑏
√
𝜋

2𝑏
(1 −

1

√2
) 𝜉 (

3

2
),              (60) 

where 𝑏 =
𝑚𝑐2

𝑘𝑇
≫ 1. 

 In the ultrarelativistic limit, i.e. 𝑏 ≪ 1  (or m→0) we get 

𝑛𝐹𝐷 = 2𝜋𝑔−1 (
𝑘𝑇

ℎ𝑐
)
3 3

2
𝜉(3).    (61) 

 Comparing the latest results obtained for the average particle number density of the RQIG FD with the 

corresponding expressions for the RQIG BE (48), (50) and the RQIG MB (34), (36), we come to the conclusion that 

within these limits the properties of these gases are similar to each other friend. 

Concluding the section, we give an expression for the average energy density of the RQIG FD in the 

ultrarelativistic or massless limit 

𝜌𝐹𝐷 = 4𝜋𝑔−1 (
𝑘𝑇

ℎ𝑐
)
3
(𝑘𝑇)

3

4
7𝜉(4).   (62) 

Therefore, the average internal energy of one ultrarelativistic fermi particle is equal to 

                                                        𝑢𝐹𝐷 =
𝜌

𝑛
= 𝑘𝑇

7

2

𝜉(4)

𝜉(3)
.                         (63) 

Thus, within the framework of the proposed invariant relativistic theory of a quantum ideal gas, for the first 

time, a closed description of their properties was given based on quantum statistical averaging without using the 

method of thermodynamic potentials (compare with [10, 11, 12, 15, 17, 26, 27, 31, 39 ]). 

For the sake of justice, it should be noted the works [28, 34], in which the macroscopic characteristics of 

quantum relativistic bosons and fermions were also found on the basis of averaging over the FD and BE energy 

distributions. However, the conditions for the condensation of Bose gases and the ultrarelativistic limits for quantum 

Bose and Fermi particles were not considered in them. In short, the studies were limited to the analysis of the behavior 

of the macro-characteristics of quantum relativistic bosons and fermions in the essentially non-relativistic limit, i.e. 

𝑘𝑇 ≪ 𝑚𝑐2 (or 𝑏 ≫ 1), when the condition 𝜇′ = 𝜇 −𝑚𝑐2 < 0 is satisfied for both cases (which means weak 

degeneracy for fermions). 

All results are obtained by a unified approach - using only the properties of the modified Bessel functions of 

integer order 𝑘𝑛 (b), which greatly simplifies the calculation of the desired characteristics of the RQIG and is very 

convenient when applied to the study of the set of RQIG in physical systems, where the ratio of the chemical potential 

and rest energy to thermal energy can change from zero to infinity (see, for example, [20, 21, 22, 23, 29, 30]). 
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2.4  Relativistic quantum gas model of the Universe 

 

Analyzing the works devoted to the study of the evolution of the Universe in the framework of the so-called 

standard cosmological models, as well as the properties of the quark-gluon plasma, it is easy to see that the gas model 

is widely used in them [20, 21, 22, 23, 31]. Indeed, in a number of cases it makes it possible to adequately describe the 

phenomena under study in a simple way. In other words, this is its main charm. 

The relativistic quantum gas model of the Universe offered by us, represents some generalization of the 

existing models of the Universe. In it, it is considered as a closed system of a set of relativistic quantum ideal gases, 

particles, antiparticles, and photons included in it. 

We note that the inclusion of antiparticles in the relativistic theory of QIG, as shown in a number of recent 

papers [26, 27], makes it possible to study the processes of particle production and annihilation, as well as the 

phenomenon of particle condensation in physically important situations. 

To determine the macroscopic characteristics of the RQIG of Bose and fermi -antiparticles, we use the fact 

that the correct relationship between the statistics and the type of particles is preserved, i.e. a particle and its 

antiparticle obey the same statistics. In addition, it is enough to change the chemical potential for antiparticles to−𝜇, 

i.e. 𝜇̅ = −𝜇 (hereinafter, for antiparticles, we use the generally accepted notation - the overline). [31] 

Let's start with a description of the properties of the RQIG of Bose particles and antiparticles, which obey the 

Bose-Einstein distribution 

𝑓𝐵𝐸 =
1

𝑒
𝐸−𝜇
𝑘𝑇 −1

, 𝑓𝐵̅𝐸 =
1

𝑒
𝐸+𝜇̅
𝑘𝑇 −1

.    (64) 

Since the number of particles and antiparticles cannot be negative, the following inequalities must hold for 

particles and antiparticles, respectively: 

                                              𝜇 < 𝑚𝑐2, 𝜇̅ > −𝑚𝑐2.        (65) 

Combining these inequalities, introducing a single notation for the chemical potential of the RQIG of Bose 

particles and antiparticles, we obtain the condition 

−𝑚𝑐2 < 𝜇 < 𝑚𝑐2.     (66) 

The case |𝜇| = 𝑚𝑐2, i.e. when the denominator of the distribution for 𝑓 and 𝑓 ̅  vanishes, naturally, as was 

shown above, it requires special consideration with the help of limits (see the previous sections). 

This "special" case, as we know, corresponds to the conditions of condensation, respectively: for Bose 

particles (𝜇 = 𝑚𝑐2) and for Bose antiparticles (𝜇̅ = −𝑚𝑐2), i.e. their accumulation in the state with zero momentum. 

From here we get the fundamental conclusion that the condensation of Bose particles and antiparticles cannot occur 

simultaneously, because they correspond to different chemical potentials, the difference of which in this case is equal 

to 𝜇 − 𝜇̅ = 2𝑚𝑐2, i.e. twice the rest energy of a free particle. Simply put, they can coexist together only if the general 

inequality (66) is satisfied. Those Bose particles cannot exist at chemical potential values 𝜇 > 𝑚𝑐2, and Bose 

antiparticles cannot exist at           𝜇̅ < −𝑚𝑐2,, since under these conditions their numbers will be negative, which is 

impossible from a physical point of view. 

As we can see, the inclusion of antiparticles in the RQIG theory significantly changes the range of possible 

values of the chemical potential μ, which is limited by inequality (66). 

Further, we must take into account that in the possible processes of creation and annihilation of a particle-

antiparticle pair, the following fundamental laws must be fulfilled: 

1. Particle and antiparticle are always born in pairs. 

2. During the annihilation of a pair of particles and antiparticles, they turn into two photons, i.e. into an 

electrically neutral particle with zero rest mass. 

Therefore, in these processes, the law of conservation of electric charge must be fulfilled, which in this case 

ensures the electrical neutrality of the system of pairs of particles and antiparticles. 

To eliminate misunderstandings, we note that we consider the processes of creation and annihilation of only a 

particle-antiparticle pair without the participation of other particles. 

Then, using our previous results obtained for the RQIG BE, we obtain the following expressions for the 

average number density of particles and antiparticles: 

𝑛 = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
∑

𝑘2[(𝑛+1)𝑏]

(𝑛+1)𝑏
𝑒(𝑛+1)𝑎∞

𝑛=0 ,

𝑛̅ = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
∑

𝑘2[(𝑛+1)𝑏]

(𝑛+1)𝑏
𝑒(𝑛+1)𝑎̅∞

𝑛=0 .
}   (67) 

Here: 
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𝑏 =
𝑚𝑐2

𝑘𝑇
, 𝑎 =

𝜇

𝑘𝑇
, 𝑎̅ =

𝜇̅

𝑘𝑇
.   (68) 

Since a particle and an antiparticle have the same rest mass and opposite electric charges, to ensure the 

electrical neutrality of a system of pairs of particles and antiparticles, the following condition must be met: 

                                        𝑄 = 𝑛𝑞 + 𝑛̅𝑞̅ ≡ 𝑞(𝑛 − 𝑛̅) = 0.                   (69) 

Therefore, taking into account that 𝜇̅ = −𝜇, we obtain: 

𝑛 − 𝑛̅ = 4𝜋𝑔1 (
𝑚𝑐

ℎ
)
3
∑

𝑘2[(𝑛+1)𝑏]

(𝑛+1)𝑏
{𝑒(𝑛+1)𝜇 − 𝑒−(𝑛+1)𝜇}∞

𝑛=0 .  (70) 

Thus, the electrical neutrality of a system of pairs of particles-antiparticles is preserved only and only if the 

chemical potential of the system 

𝜇 = 0,      (71) 

at any temperature. 

Naturally, such a conclusion can be reached in another way, namely: under conditions of statistical 

equilibrium, the temperature and chemical potential for the entire system (in this case, the Universe) must be the same. 

Since for photons (as for a particle with zero rest mass) 𝜇 = 0, then for all particles and antiparticles the chemical 

potential is equal to zero. 

Note that a similar result also follows from the theory of thermodynamic potentials, according to which, under 

conditions of thermodynamic equilibrium, the free energy potential should have a minimum value, i.e. 

                                                               
𝜕𝐹

𝜕𝑛
= 0,                     (72) 

for any gas in the system under consideration. However, according to (20), this derivative is equal to the chemical 

potential and is necessarily equal to zero - otherwise the system of ideal gases will not be in thermodynamic 

equilibrium. 

Zero chemical potential significantly changes the role of massive, i.e. having mass, particles and massless, i.e. 

particles with zero rest mass, namely: particles with rest mass 𝑚𝑐2 ≫ 𝑘𝑇 make an exponentially small contribution 

compared to massless particles 𝑚 → 0  in all macroscopic characteristics. 

For example, for the average number density of bose- particles, we have 

𝑛𝐵𝐸 = 4𝜋𝑔1 (
𝑘𝑇

ℎ𝑐
)
3

√
𝜋

2
𝑏−

3

2𝑒−𝑏⁡⁡⁡⁡(𝑏 ≫ 1),

𝑛𝐵𝐸 = 4𝜋𝑔1 (
𝑘𝑇

ℎ𝑐
)
3
2𝜉(3).⁡⁡⁡⁡(𝑏 ≪ 1)

}   (73) 

This behavior of the number of particles in the literature is called the exponential "suppression" of the 

population of superheavy particles. 

Similarly, for the average energy density of fermi-particles, we obtain 

                               
𝜌𝐹𝐷 = 4𝜋𝑔−1 (

𝑘𝑇

ℎ𝑐
)
3
(𝑘𝑇)√

𝜋

2
𝑏−

5

2𝑒−𝑏⁡⁡⁡⁡(𝑏 ≫ 1),

𝜌𝐹𝐷 = 24𝜋𝑔−1 (
𝑘𝑇

ℎ𝑐
)
3
(𝑘𝑇)

7

8
𝜉(4)⁡⁡⁡⁡(𝑏 ≪ 1).

}   (74) 

Consequently, in systems with zero chemical potential [21], the predominant role is played by massless 

ultrarelativistic particles. 

And finally, as the temperature tends to absolute zero, we come to the conclusion that all particles form the so-

called pure condensate, and there are no above condensate particles. The author of [20] figuratively calls this situation 

the “freezing” of the Universe or quark-gluon plasma, as well as the “sea” of Fermi. 

Concluding the section, we emphasize that according to the theories of the "grand" unification, the chemical 

potentials for all particles and antiparticles are equal to zero [21]. Moreover, at ultrahigh temperatures, i.e. at 𝑘𝑇 ≫

𝑚𝑐2, all particles with a good approximation can be considered as ultrarelativistic, i.e. their energy should be written 

as E ≈ 𝑝𝑐. In other words, under these conditions, we can set μ→0 and m→0. Obviously, for massless bosons and 

fermions (equalities μ=0 and m=0) these results will be exact. 

2.5 Limiting velocity of the flow of QRIG particles with an adiabatic change in its state. 

As is known, one of the most important problems of relativistic high-energy physics, as well as laser-

controlled relativistic thermonuclear fusion, is the so-called energization (i.e., thermal and field acceleration) of 

particles [35, 37, 38, 40]. So far, all aspects of this really topical scientific and practical problem have not been fully 

resolved. This is due to the fact that the efficiency of thermonuclear reactions and the so-called "luminosity" of the 

processes of multiple production and annihilation of particles in collisions of ultrarelativistic particles (for example, 

heavy particles in the Large Hadron Collider [37, 38] and ultrafast thermal neutrons [AONSA, neutron school , 21 
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November, 2022]) are ultimately determined by the number of particles produced and the effective collision cross 

section of high-energy colliding particles. 

In particular, in laser-controlled inertial thermonuclear fusion, an ultrafast compression of the resulting plasma 

by a system of lasers occurs under the action of super-powerful pulses (the power of which is on the order of 

terawatts, and the duration of the pulses is several picoseconds). At the same time, the processes of heating the laser 

plasma (up to hundreds of millions of kelvins) and the ultrafast acceleration of the formed flows of plasma particles 

take place simultaneously. As a result, they enter into nuclear reactions in one trillionth of a second, i.e. until the 

reverse "expansion" of the plasma. 

According to existing theoretical models, an adiabatic change in the state of the resulting plasma of ionized 

particles occurs in the system under consideration. When studying such processes, a sufficiently good and adequate 

approximation is the gas model of the plasma of relativistic particles [32, 33, 35, 36]. 

Since, in this case, the flow rates of particles of quantum ideal gases are very close to the speed of light, i.e. 

v ≈ 𝑐, their pressure is comparable to their energy density (see expressions (1)-(2)). 

Therefore, in such situations, it is necessary to use the equation of the adiabatic process for a quantum 

relativistic ideal gas (Bose and Fermi particles), as well as take into account the relativistic Bernoulli equation 

(binding pressure, average energy density, average particle number density and particle flow velocity QRIG). Note 

that a similar problem also arises in the phenomenon of thermal accretion, i.e. accumulation of particles in a state with 

ultrahigh pressure [36]. A similar question arises in the problem of the "expansion" of the Universe into the void[40]. 

Following the foregoing, we represent the set of QRIG as a closed adiabatic system. As is known, with an 

adiabatic change in the state of a gas [31]: 

                                         𝑑𝑄 = 𝑑 (
𝜌

𝑛
) + 𝑝𝑑 (

1

𝑛
) = 0.                  (75) 

From here we get the following equation: 

                                                      
𝑑𝜌

𝑑𝑛
=

𝑝+𝜌

𝑛
,        (76) 

which makes it possible to determine the average energy density of particles, as well as the pressure of the RQIG in 

the adiabatic process, and as a result of its integration, we find the following equation of state for the RQIG in the case 

under consideration 

𝜌 = 𝑛𝑚𝑐2 +
𝑝

𝛾−1
, 𝑝 = 𝛼𝑛𝛾 ,⁡⁡⁡⁡𝛼 = 𝑐𝑜𝑛𝑠𝑡.    (77) 

Here: γ –  is the adiabatic index of the RQIG, which is determined by the following expression 

𝛾 = 1 +
𝑘

𝑐𝑉
,  𝑐𝑉 =

𝑑𝑢

𝑑𝑇
,  𝑢 =

𝜌

𝑛
.  (78) 

Now we take into account that the velocity of the flow of QRIG particles obeys the relativistic Bernoulli 

equation [31] 
1

√1−𝑢2
= 𝑐𝑜𝑛𝑠𝑡 ∙

𝑛

𝑝+𝜌
, 𝑢 =

𝑣

𝑐
.    (79) 

Here: 𝜗 – is the speed of the flow of QRIG particles, c is the speed of light. 

The constant in this expression is determined from the condition that the initial flow rate of the QRIG is equal 

to zero. Then 

𝑐𝑜𝑛𝑠𝑡 =
𝑝0+𝜌0

𝑛0
. 

The upper limit 
𝑛

𝑝+𝜌
 is reached as p → 0  (and hence ρ → 𝑛 ∙ 𝑚𝑐2), i.e. while flying into the void. Thus, the 

maximum flow rate of QRIG particles is determined by the following expression 

(1 − 𝑢𝑚
2)−

1

2 =
𝑝0+𝜌0

𝑛0∙𝑚𝑐
2.    (80) 

Further, 𝑣𝑚𝑎𝑥 will be expressed in terms of the speed of sound 𝑣𝑠 in a gas with parameters 𝑝0, 𝜌0, 𝑛0. To do 

this, we use its definition [31] 

𝑎2 =
𝑣𝑠
2

𝑐2
=

𝑑𝑝

𝑑𝜌
≡

𝑑𝑝

𝑑𝑛
𝑑𝜌

𝑑𝑛

=
𝛾𝑝

𝑛∙𝑚𝑐2+
𝛾𝑝

𝛾−1

.   (81) 

Now, taking into account the equation of state in the adiabatic process (77), we write expression (80) in the 

following form   

                                      (1 − 𝑢𝑚
2)−

1

2 =
1

𝑛∙𝑚𝑐2
(𝑛 ∙ 𝑚𝑐2 +

𝛾𝑝

𝛾−1
) ≡

𝛾𝑝

𝑛𝑚𝑐2𝑎2
.    (82) 

Finally, denoting 𝛾𝑝 = 𝑥, we find from (81): 

𝛾𝑝 = 𝑛𝑚𝑐2
𝛾−1

𝛾−(1+𝑎2)
𝑎2.    (83) 
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Then from expression (82) we obtain 

                                                 (1 − 𝑢𝑚
2)−

1

2 =
𝛾𝑝

𝑎2𝑛𝑚𝑐2
≡ (1 −

𝑎2

𝛾−1
)
−1

.              (84) 

Here we have changed 𝑝0, 𝜌0, 𝑛0  to p, ρ, n since they are arbitrary. 

Hence, rewriting 𝑥 in the identical form 

𝑥 = 𝑛𝑚𝑐2
𝑎2

1−
𝑎2

𝛾−1

,     (85) 

taking into account (85) and substituting into (84) we obtain 

𝛾
𝑝

𝑛𝑚𝑐2
=

𝑎2

1−
𝑎2

𝛾−1

⁡⁡⁡(𝐴),

√1 − 𝑢𝑚
2 = 1 −

𝑎2

𝛾−1
⁡⁡⁡⁡(𝐵).

}    (86) 

The last two relations make it possible to determine the flow rate of RQIG particles, as well as the ratios of 

pressure and the average density of the numbers of RQIG particles, which are necessary in the study of accretion 

phenomena, i.e. accumulation of particles in a state with superhigh pressure and energy density [32, 35], as well as in 

the problem of the “expansion” of the Universe into the void [40]. 

From the analysis of system (86) it follows that the condition of the impossibility of motion at the speed of 

light and the condition of positive pressure require the fulfillment of the inequality 

𝛾 > 1 + 𝑎2.      (87) 

But according to the equation of state RQIG (41), the limit equation of state has the form 

𝑝 =
𝜌

3
,      (88) 

which corresponds to the massless limit (i.e. m→0, T≠0) or ultrarelativistic limit (i.e. 𝑘𝑇 ≫ 𝑚𝑐2). 

Consequently, from (81) it follows that in this case 

𝑎2 =
1

3
.      (89) 

Thus, we finally obtain the following fundamental inequality 

𝛾 >
4

3
,      (90) 

under which, relations (A) and (B) of system (86) will be consistent, i.e. the pressure will be positive, and the particle 

flow speed will be up to the speed of light. In other words, there can't be RQIGs with adiabatic exponent 𝛾 ≤
4

3
. 

Similarly, investigating the dynamic equilibrium condition of a star, we obtain the following inequality 
𝑅

𝑅𝑔
≥

𝛾𝑝ℎ (𝑤ℎ𝑒𝑟𝑒⁡𝑅𝑔 =
2𝐺𝑀

𝑐2
) , 𝑅𝑔 − gravity⁡radius, under which there is a stable equilibrium position of the star (here: G is 

the gravitational constant, 𝑐 -is the speed of light,⁡𝛾𝑝ℎ − is the smallest adiabatic exponent QRIG, i.e. photons [see 

below]). 

Next, we find the adiabatic exponents, respectively, for the Maxwell-Boltzmann, Fermi-Dirac and Bose-

Einstein RQIG in this limit, using expressions (25), (63) and (56) based on (78) [5]: 

𝛾𝑀𝐵 =
4

3
, 𝛾𝐹𝐷 = 1 +

2

7

𝜉(3)

𝜉(4)
, 𝛾𝐵𝐸 = 1 +

1

3

𝜉(3)

𝜉(4)
.  (91) 

Now, substituting the found values of the adiabatic exponents into the system (86), we come to the following 

conclusions: 

1. For ultrarelativistic QIG MB 𝛾 =
4

3
, i.e. 

𝑎2

𝛾−1
= 1. In this case, p→∞ and u→1. 

But there are no spinless particles in nature, and this example is used here as an illustration. 

2. For massless QIG FD 𝛾 <
4

3
, i.e. 

𝑎2

𝛾−1
> 1. However, for these values of γ, system (86) turns into equalities 

of meaningless physical content, namely: according to (A), the pressure becomes negative, which is not satisfied by 

any ideal gas known to date (of course, except for the hypothetical "dark matter"); relation (B) is not satisfied at all, 

because the left side is non-negative and the right side is negative. In other words, the flow velocity of QIG particles 

becomes imaginary, which is unacceptable. 

The authors of [11] interpret this emerging feature as properties of RIG tachyons (hypothetical superluminal 

particles), which create the much desired negative pressure necessary for the formation of "dark" matter. 

However, we are guided by the fact that we are dealing with real-life particles and substances (the opposite 

assumption is “blasphemy” even from a scientific point of view). 
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But the result (63) and the adiabatic exponent 𝛾𝐹𝐷 following from it are exact. The only incorrect assumption 

in the chain of reasoning made here is the unsubstantiated assumption about the existence of Fermi particles with zero 

rest mass [21], which is made in the framework of the "grand" unification theories. 

But as the above proof proves, this assumption is incorrect from a physical point of view, which leads to 

results that do not correspond to common sense. 

3. For a massless Bose particle, i.e. photon 𝛾 >
4

3
. Therefore, in this case 

𝑎2

𝛾−1
< 1. 

Thus, we will come to the conclusion that the particle flow velocity of a massless photon gas has a limiting 

velocity less than the speed of light, which is equal to: 

𝑣𝑝ℎ = с√1 − [1 −
𝜉(4)

𝜉(3)
]
2
.    (92) 

Further, taking into account the values of the Riemann zeta functions 𝜉(4) = 1,0823…, 𝜉(3) = 1,2020… we 

obtain 

𝑢𝑝ℎ =
𝑣𝑝ℎ

𝑐
≈ 0,436 < 𝑎𝑚𝑎𝑥 =

𝑣𝑠𝑚𝑎𝑥

𝑐
=

1

√3
≈ 0,578…  (93) 

Therefore, the particle flow velocity of even photon gas is subsonic! Thus, we will come to the conclusion that 

the following fundamental inequalities        𝛾 ≥ 𝛾𝑝ℎ >
4

3
  и 𝑣 ≤ 𝑣𝑝ℎ < 𝑣𝑠𝑚𝑎𝑥⁡will hold for all real-life QRIGs. 

The contradiction that has arisen above can be solved as follows: if a Fermi particle (for example, a relic 

neutrino, which is the only candidate of Fermi particles that “claims” to have zero rest mass) has a very small but 

nonzero mass, then now for it 𝑎2 <
1

3
 – since 𝑎2 =

1

3
  only for massless particles. Similarly, 𝛾rel.neutr. > 𝛾𝑝ℎ >

4

3
 

i.e.⁡𝛾rel.neutr. − 1 >
1

3
. 

Consequently, in this case, at any temperatures other than zero, i.e. T≠0 and T≠∞, according to what has been 

proven, all QRIG will create non-negative pressure and their particle flow rates will satisfy the condition 𝑣 ≤ 𝑣𝑝ℎ <

𝑣𝑠𝑚𝑎𝑥. 

Thus, Fermi particles with zero rest mass cannot exist in nature. In other words, the only particle with zero rest 

mass is the Bose particle, the photon. 

Thus, we will come to the conclusion that the ratio of pressure to the maximum possible value of the average 

energy density refers to a massless bosonic gas, i.e. photon gas. 

Combining the last and previous conclusions, we come to the conclusion that there cannot be: "collapse" with 

infinite pressure and average energy density - which would take place, according to the above proved for 𝛾 ≤
4

3
; and 

irreversible "expansion" of the Universe after the "Big Bang" (since the speed of the flow of QRIG particles is less 

than the limiting speed of sound in nature, i.e. the criterion of "expansion" 
𝑣

𝑣𝑠𝑚𝑎𝑥
> 1⁡is not met). 

Concluding the section, we emphasize that the steady-state motion of QRIG particle flows analyzed by us in 

the adiabatic process of changing its state from a mathematical point of view is equivalent to finding a stationary 

solution of the equations describing the laws of conservation of energy and particle flow, taking into account the first 

law of relativistic thermodynamics (for details of analysis and calculations, see [ 40]). In particular, an important 

conclusion was obtained in it that when the Universe "expansion" even from a singular point with infinite pressure and 

energy density, the speed of its "expansion" does not exceed the speed of light. The value found in this work, the so-

called "Hubble constant", equal to 71
𝑘𝑚

𝑠

𝑀𝑒𝑔𝑎.𝑝.𝑠
 at 𝑣 = 𝑐, in the Big Bang theory is considered as an increase in the 

"acceleration velocity" for each Mega.p.s distances. 

For comparison, we note that, according to the data given in W. Freedman e.a. [40], the most probable values 

of the Hubble velocity (in units of 

𝑘𝑚

𝑠

𝑀𝑒𝑔𝑎.𝑝.𝑠
) are: 67.4±0.5 (Planck collaboration), 69.8±1.9 (CCHP), 73.9±1.6 

(cepheids). 

However, this speed is not the speed of the "retreat" of the Universe - which is obvious according to the 

above. In other words, the maximum particle flow velocity 𝑣𝑚𝑎𝑥 = 𝑐 of a QIG that does not exist in nature is served 

under the “sauce” of the “constant Hubble”. 

This is due to the fact that the ratios =
𝜌

3
 , 𝑎2 =

1

3
, 𝛾 =

4

3
, used in the Big Bang theory, which are not satisfied 

by any of the QRIG existing in reality, since for them 𝛾 ≥ 𝛾𝑝ℎ >
4

3
. 

Naturally, the fundamental inequalities proved above 𝛾 ≥ 𝛾𝑝ℎ >
4

3
;  

𝑣 ≤ 𝑣𝑝ℎ < 𝑣𝑠⁡𝑚𝑎𝑥 could not be obtained without analyzing the behavior of the QRIG in the massless limit. 
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According to the proposed relativistic quantum model of the Universe, at absolute zero temperature it forms a 

kind of condensate of its constituent particles or, in other words, vacuum. 

If we assume that at a certain critical temperature, due to quantum and thermal fluctuations, there is a 

continuous birth of a pair of electron neutrinos and antineutrinos from vacuum and their annihilation into two photons 

(or vice versa - these statements are equivalent) - then, after the establishment of thermal equilibrium, a quantum IG of 

the electron neutrino is formed - antineutrinos and photons. 

Next, consider this collection of Fermi and Bose particles as a closed thermodynamic system - which is 

thermally isolated. Then only adiabatic changes in its state are possible in it, i.e. adiabatic expansion (including into 

the void). 

According to the results of the previous sections, in this case, the relic radiation is transferred by a photon gas 

flow. As we have shown above, the flow rate of photon gas particles varies in the range 0 ≤ 𝜗 ≤ 𝜗𝑚𝑎𝑥 . 

Since, according to SRT, all directions of space are equal, we can assume that the adiabatic expansion occurs 

radially. Due to the fact that the emitted photons and the speed of the photon gas flow are directed in the same 

direction, a natural red shift of the CMB wavelengths occurs. 

In fact, the time determined by the formula 

𝑡 =
𝑟

𝜗
 

means the time interval during which the disturbance (or “signal”) travels distances r from the moment it was sent. In 

our case𝜗𝑚𝑎𝑥 = 𝜗𝑝ℎ is exact and does not depend on experimentally determined empirical parameters. 

Moreover, if the speed of "escape" of galaxies increases by only 71⁡
𝑘𝑚

𝑠𝑒𝑐
 for colossal distances of one Mega p.s. - then 

the speed and acceleration of the "expansion" of the Universe is actually equal to zero. 

If the characteristic time of establishing the maximum flow velocity is the time of "formation" of the cosmic 

microwave background radiation with an average energy 𝜀̅ = 2,7⁡𝑘𝑇, then according to the Heisenberg uncertainty 

relation, we obtain 

𝑡 ≈
ℎ

𝜀̅
= 10−12𝑠. 

 Then the characteristic acceleration of the flow of photon gas particles will be equal to 

𝑎 =
𝜗𝑚𝑎𝑥
𝑡

≈ 1,3 ∙ 1020
м

с2
. 

Note that approximately the same will be the acceleration of ions in a relativistic plasma - formed in an inertial 

laser-controlled thermonuclear fusion. 

According to the results of [41], the time scale factor is determined by the following formula  

𝑡 =
1

𝐻
∙ (1 −

2

3𝛾
) , 

here H – is the above given value of the “Hubble constant”, 𝛾 –  is the adiabatic index of the QRIG inhabiting the 

Universe. If we assume that the Universe was formed near the temperature of absolute zero - as shown above, then 

𝛾 → ∞ - since, at Т → 0, с𝑉 → 0. However, in this case the flow rate of the QRIG is zero (see Figure 5 and formula 

86-B), which means 𝐻 = 0. In other words, the age of the universe is infinite. Moreover, any cosmological theory will 

eventually have to use the equation of state of the gaseous universe. In particular, the values 𝛾: 0, 1,
4

3
⁡ used in the cited 

work are not related to reality, since, as it was shown above, for all really existing QRIG 𝛾 ≥ 𝛾𝑝ℎ >
4

3
. 

 

Conclusions and discussions 

3.1  Some consequences of the relativistic invariant theory of classical and quantum ideal gases 

As emphasized at the beginning of the article: the history of the RQIG theory spans more than a century of 

time (see, for example, [10, 11, 12, 19, 31, 39]). But there are still a number of open problems awaiting their solutions, 

some of which are considered in this paper. Let's list them in order: 

1. Is the temperature invariant or does it change when moving from one inertial frame of reference to another? 

We have proved that, due to the relativistic invariance of the particle momentum distribution function, the 

temperature is also necessarily invariant. Otherwise, under Lorentz transformations, the DF also changes, i.e. the 

statistical nature of the system, which leads to the dissimilarity of the equations of state (connecting the macroscopic 

characteristics of the gas and the temperature) of the RQIG, which contradicts the invariance of the laws of nature in 

all IFRs. 
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2. For the first time, analytical expressions for macroscopic characteristics and equations of state for a set of 

RQIG of particles, antiparticles, and a photon, obeying the canonical distributions of BE and FD, are obtained for 

arbitrary final values of the ratios of the chemical potential and rest energy to thermal energy based on quantum 

averaging, without using the thermodynamic potential method. 

3. It is shown that the condition for the condensation of Bose particles is 𝜇(𝑇𝑐) = 𝑚𝑐
2. The found difference 

between the average density of the numbers of the part and antiparticles 𝑛 − 𝑛̅ (which some authors call the "number 

of particles", but we do not adhere to this point of view), shows that if 𝜇 > 0, then particles dominate, and for 𝜇 < 0, 

antiparticles prevail ( see expression (70)). 

Further, taking into account the requirements of statistical and thermal equilibrium, which is possible only if 

the temperature and chemical potential are the same for the entire system, the chemical potential is equal to zero, since 

the photon has 𝜇𝛾 = 0, then for all RQIG of particles and antiparticles⁡𝜇 = 0. 

For comparison, the thermodynamic equilibrium condition is given based on the thermodynamic potential 

method based on the canonical Gibbs distribution (which we do not use anywhere), which requires a minimum free 

energy for each kind of particles. This requirement also necessarily leads to the condition 𝜇 = 0. 

4. On the basis of the relativistic Bernoulli equation, the first law of relativistic thermodynamics for an 

adiabatic process, which in the language of entropy means its invariance [31], an expression was obtained that makes 

it possible to determine the velocity of the flow of RQIG particles. 

Based on the analysis of possible values of pressure (p>0) and particle flow velocity (v<c), a fundamental 

conclusion was obtained that fermions with zero mass cannot exist, since their presence leads to results that are 

meaningless from a physical point of view. 

5. The relativistic quantum gas model of the Universe is considered, in which at absolute zero temperature all 

particles are in the state of "pure" condensate. 

Assuming that at a certain “critical” temperature, due to quantum and thermal fluctuations, there is a 

continuous production of a particle-antiparticle pair - an electron neutrino and an antineutrino - and the annihilation of 

this immobile pair into two photons, we conclude that the average number density of produced photons of the relict 

radiation is exactly equal to the average number density of the annihilated neutrino-antineutrino pair, since n + n̅ =

2𝑛𝑝ℎ. Since for⁡𝜇 = 0, 𝑛 = n̅, then 𝑛 = 𝑛𝑝ℎ. 

6. The conclusion in statistical and thermal equilibrium actually means the invariance of the average 

macroscopic characteristics over time and their equality to the statistical average, which is possible only at zero 

chemical potential for all gases at any temperature. The authors of [26, 27, 31] also come to the conclusion that “... 

both types of bosons (Bose particles and antiparticles) will be more stable at the lowest values of free energy at all 

temperatures for a fixed “number of particles” (i.e., the difference between the average densities of particles and 

antiparticles in our interpretation)”. 

7. Based on numerical simulations, the authors of [27, 31] analyzed the process of the birth of particles and 

antiparticles that make up an electrically neutral system and came to the following conclusion: “... in the essentially 

nonrelativistic limit, i.e. at 𝑘𝑇 ≪ 𝑚𝑐2, 𝜇 particles and antiparticles are “suppressed” by the exponential factor 

exp (−
𝑚𝑐2

𝑘𝑇
)… charge and their annihilation in a vacuum. However, this does not change their total charge, i.e. the 

condition of electrical neutrality is not violated.” 

In particular, from expression (70), when 𝜇(𝑇𝑐) = 𝑚𝑐
2, but 𝑘𝑇 ≪ 𝑚𝑐2, i.e. at ultralow temperatures, we get 

[4, 42] 

𝑛 − 𝑛̅ ≈ 4𝜋𝑔1√
𝜋

2
(
√𝑚𝑘𝑇

ℎ
)
3

(1 − 𝑒−2𝑏). 

It follows from here that the contribution of antiparticles is indeed negligible near the absolute zero 

temperature, i.e. “suppressed” by the exponential factor 𝑒−2𝑏 ≪ 1, in full accordance with the result of numerical 

simulation in [27, 31]. 

In addition, using the found expression for the difference between the average densities of the numbers of 

particles and antiparticles, it is possible to determine the electromagnetic shift of the critical condensation temperature 

∆𝑇𝑐, due to the interaction of charged particles and antiparticles, based on the relation [27]: 

  ∆𝑇𝑐 =
𝑚𝑐2

𝑘
𝛼

∆𝑛

(
𝑚𝑐

ℎ
)
3
⁡
,  𝛼 =

𝑒2

2ℎ𝑐
. 

Here: α – is the so-called fine structure constant, ∆𝑛 = 𝑛 − 𝑛̅. 

Therefore, as expected, at ultralow temperatures, near which Bose-Einstein condensation takes place, the 

correction to 𝑇𝑐 is very small, since 𝛼 ≈
1

137
 and 

𝑘𝑇

𝑚𝑐2
≪ 1. 
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In other words, particles and antiparticles are always born and destroyed only in pairs. In these processes, the 

law of conservation of electric charge is always fulfilled, i.e. the electrical neutrality of the system remains unchanged, 

which, as was proved above, is carried out only at zero chemical potential, i.e. in an equilibrium state. This condition 

leads to the equality 𝑛 = 𝑛̅. 

Thus, the results obtained by us in a purely analytical way are fully confirmed by the results of numerical 

simulation in [27, 31], which proves their reliability. 

8. It is shown that the particle flow rate of the QRIG cannot exceed 

 𝑣𝑝ℎ < 𝑣𝑠.𝑚𝑎𝑥. Here: 𝑣𝑝ℎ ⁡and 𝑣𝑠.𝑚𝑎𝑥 are, respectively, the speed of the flow of photon gas particles and the 

maximum speed of sound. 

9. It has been established that the adiabatic indices of the actually existing RIGs satisfy the fundamental 

inequality 𝛾 ≥ 𝛾𝑝ℎ >
4

3
, which ensures non-negativity of the pressure and subsonic velocity of their particle flows. 

10. The relativistic particle velocity distribution function of the classical RIG MB has found its experimental 

confirmation [4] (Fig. 1.), which in the energy representation has the form (Fig. 2.) 

𝑓(𝛾) =
𝑏

𝑘2(𝑏)
𝛾√𝛾2 − 1𝑒−𝑏𝛾, 𝛾 =

𝐸

𝑚𝑐2
, 𝑏 =

𝑚𝑐2

𝑘𝑇
. 

11. According to the conclusion of researchers at the CERN Large Hadron Collider, “the process of particle 

collisions occurs approximately like collisions in an ideal gas of classical relativistic particles” [37, 38], i.e. their spin 

affiliation can be ignored. This is due to the fact that the accelerated particle beams have a low density, i.e. 𝑛 ≪ (
𝑚𝑐

ℎ
)
3
 

and have ultrarelativistic velocities, i.e. v ≈ 𝑐. In this case, the Coulomb interaction between colliding particles can be 

ignored, since in the situation under consideration 
𝐾𝑒2

𝑑𝐾𝐵𝑇
≪ 1. Here: d = 𝑛−

1

3– average characteristic distance between 

particles; 𝐾𝐵𝑇~𝑇𝑒𝑉 – thermal energy equivalent to the energy of colliding relativistic particles. For example, for the 

electron-positron plasma of cosmic rays, the latter ratio is 10−23 [36]. 

Consequently, the representation of an ideal gas under such conditions is quite reasonable and makes it 

possible to adequately describe the processes under study on the basis of the relativistic distributions of MB, FD, and 

BE. 

We have found an expression for the effective collision cross section σ [4]. It allows one to determine σ for 

arbitrary, intermediate values of the ratio of the thermal energy and the rest energy of the particle. 
𝜎

𝜎𝑚𝑎𝑥
=< 𝑢 >, < 𝑢 >=

<𝑣>

𝑐
. 

Here: 𝜎𝑚𝑎𝑥 = 𝜎𝑛 ∙ 𝑐, 𝜎𝑛- is the total geometric cross section of the nucleon, < 𝑣 > − is the arithmetic mean 

velocity of the particle colliding with the stationary nucleon[4]: 

  < 𝑢 >=
2𝑒

−
1
𝑥

𝑘2(
1

𝑥
)
∙ 𝑥(1 + 𝑥);                  𝑥 =

𝑘𝑇

𝑚𝑐2
 

It follows from the above graph that even at Planck 𝑇𝑃𝑙~10
31 К, it is impossible to achieve 𝜎𝑚𝑎𝑥, because 

equality 𝑣 = 𝑐 is not achieved (fig.3.). Figure 4 shows for comparison a typical dependence of the collision cross 

section. 

12. Based on the above analyses, we will come to the following fundamental conclusions: 1) there can be no 

infinite compression or “collapse” of the gaseous Universe, which would take place if the inequality 𝛾 ≤
4

3
 is satisfied 

(on the other hand, this is a well-known condition instability of the so-called polytropic stars [5]), however, according 

to the above evidence, all real-life QRIGs have adiabatic exponents 𝛾 ≥ 𝛾𝑝ℎ >
4

3
; 2) Analyzing the opposite, we come 

to the conclusion that there is no irreversible "expansion" of the gaseous Universe, which would take place at a 

supersonic flow velocity of its particles, i.e. 𝑣 > 𝑣𝑠⁡𝑚𝑎𝑥, which is obviously not carried out, since 𝑣 ≤ 𝑣𝑝ℎ < 𝑣𝑠⁡𝑚𝑎𝑥 

(Fig. 5.). 

Thus, within the framework of the presented relativistic quantum gas model of the Universe, it does not 

compress and does not scatter, i.e. is in equilibrium and stationary state. 

The above proof shows that the gaseous Universe, even in the most critical situation in its evolution, does not 

shrink to a state with infinite pressure and unlimited average energy density, and its irreversible expansion at 

supersonic speeds does not occur. 

In fact, this is also a proof of its stability, since the necessary conditions for thermodynamic equilibrium and 

the so-called dynamic stability 𝛾 > 1 are simultaneously satisfied [36]. However, we have proved that the sufficient 

condition for its stability is the inequalities 𝛾 ≥ 𝛾𝑝ℎ >
4

3
 and  𝑣 ≤ 𝑣𝑝ℎ < 𝑣𝑠⁡𝑚𝑎𝑥. 



© 2024 IJRAR May 2024, Volume 11, Issue 2                        www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00217 International Journal of Research and Analytical Reviews (IJRAR) 149 
 

This means that neither the Chandrasekhar limit nor the Schwarzschild radius are implemented in principle, 

since they were obtained for 𝛾 ≤
4

3
--lying stars outside the stability region 𝛾 ≥ 𝛾𝑝ℎ >

4

3
 i.e. not a single really existing 

star turns into a "black" hole and there is no "dark" matter in the Universe. 

 

3.2 On New Approaches in Relativistic Thermodynamics and Relativistic Kinetic Theory 

Concluding the paper, let us briefly discuss the recently developed approaches in relativistic thermodynamics 

and relativistic kinetic theory (in particular, in non-inertial reference frames) and their applications to open problems 

in this field [45-60]. 

Naturally, as emphasized above, the most discussed and controversial issue is the law of thermodynamic 

quantities at transition from one frame of reference to another (in particular, for an accelerated moving observer) [47-

54, 59-60]. Equally important, and more important, is the problem of invariance (or noninvariance) of the distribution 

function [49-50, 56-57, 59-60] (both for single-particle and multi-particle) which has not been finally solved yet. The 

temperature (of a gas or body) in a moving frame of reference (in particular, with acceleration) is also a subject of 

incessant debates [48-49, 59-60]. 

Further, given the limited volume of the article, we will focus our attention mainly on the works of Luca 

Lusanna and her co-authors [58, 59]. This is due to the fact that, in our opinion, they are closest in content to our 

studies [4-9, 42-44]. 

Using the relativistic Hamiltonian equation of motion and Liouville's theorem, it is shown that in the absence 

of an external force the relativistic Boltzmann equation has an equilibrium solution describing the Boltzmann-Juttner 

distribution. We obtain the latter as an equilibrium stationary solution of the relativistic Fokker-Planck equation for 

the momentum distribution function [5], while the initial was the relativistically generalized Langevin equation of 

motion. 

Starting from the nonequilibrium relativistic Gibbs ensemble for the distribution function density and assuming 

that it as a micro-canonical distribution function tends to equilibrium, the authors managed to define the one-particle 

distribution function as a statistical mean. Further, by investigating transformational properties of this distribution in 

inertial relativistic reference frames under Poincaré transformations, it is shown that the one-particle distribution 

function is Lorentz-scalar, i.e. does not change at transition from one inertial reference frame to another. 

Note that, generalizing this result for the multi-particle distribution function, we can also show its relativistic 

invariance for a system of N non-interacting particles, i.e. an ideal gas, since, according to the energy relation, it is 

equal to the product of one-particle distribution functions [5]. 

The authors also managed to prove, using the micro-canonical entropy, the Lorentz-scalar temperature, i.e. 

independence of the micro-canonical temperature from the speed of the inertial reference system, when there is a 

thermodynamic limit.  And the latter means the relativistic invariance of all macroscopic characteristics of both 

classical and quantum relativistic ideal gas, since they are determined by a single parameter 𝑏 =
𝑘𝑇

𝑚𝑐2
 which is the 

Lorentz-scalar, according to the above mentioned. 

Consequently, the results in [47-48, 59] obtained on the basis of the relativistic micro-canonical ensemble 

agree with our results obtained in a purely statistical way on the basis of finding averages on the distribution function: 

for the relativistic classical Maxwell-Boltzmann ideal gas on the relativistic rate distribution function; for the 

relativistic quantum ideal gas - on the relativistic Fermi-Dirac and Bose-Einstein distribution functions. 

We believe that taking into account the interaction of particles at a distance and the noninertiality of the 

reference frame in the theory of relativistic quantum ideal gases of bose and fermi particles has conceptual importance 

and will be a subject of future research. 

Completing the preliminary stage of the "Relativistic invariant theory of classical and quantum ideal gases", 

we hope that it will find its application in various areas of relativistic accelerator physics, in the processes of collisions 

of ultrafast thermal neutrons, as well as in laser-controlled inertial relativistic thermonuclear fusion. However, time 

will tell the rest. 
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Fig.1. Distribution function of moduli of normalized particle velocities of relativistic ideal gas 

Maxwell-Boltzmann (b=0.2) 

 

Fig.2. Normalized relativistic energy distribution function (AONSA Neutron school, 21 November, 

2022 ). 

  

 

Fig.3. Normalized effective cross section of elastic collision of particles RIG. 
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Fig.4. Typical the energy dependence of cross section. 

 

 

Fig.5. Normalized maximum velocities flow of QRIG. 
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