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Abstract: 

This article discusses the outstanding position of the Cauchy distribution as a bridge between classical and 

non-commutative probability theories. Through a study of the structural stability of four categories of 

convolutions, we identify the unique position of the Cauchy distribution as one of just two probability laws. 

Within the context of non-commutative probability, we see significant features that are typical of the Cauchy 

distribution: first, the isomorphism relations between Fourier and Stieltjes transforms within the relatively 

straightforward context (tensor-free). Convergence results that we found show the propensity of probability 

measures employing various methods of convolution to asymptotic Cauchy distributions. In addition, we 

characterize the Fourier and Stieltjes extensions in their analytic setting, demonstrating that generalized 

moments from either theory are identical. The unified view of complex moments generalizes the theory to 

accommodate non-standard probability measures that are incompatible with standard moment sequences. 
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1. Introduction: 

In the theory of probability, the Cauchy distribution is one of the few distributions that is uniform in structural 

properties across classical and non-commutative systems. Pathological characteristics of the distribution, 

which have traditionally been associated with Augustin-Louis Cauchy, are quite familiar in classical 

probability due to the fact that it cannot accept finite order-one or higher moments. In non-commutative 

probability theory, the Cauchy law is a central object of research in studying the independence structures 

because of its extremely stability, which is contradictory.[2][4][7][8][9] 

 

Comparison of probability density functions for Cauchy and Normal distributions, highlighting the heavy-

tailed nature of the Cauchy distribution. 

In recent years, development within non-commutative theory of probability has promoted the outstanding 

position of some probability laws, especially the Cauchy law, to relate classical tensor convolution with 

modern notions of convection, such as free, Boolean, and monotone, to each other. More than a technical 

remark, such "bridging" is truly a manifestation of more general structural principles that disclose the intrinsic 

relationships among different notions of autonomy within these conceptual schemes.[1][10][11][12] 

Free independence, developed by Voiculescu, formed the basis of non-commutative probability and ultimately 

Boolean and monotone independence. Today, this theory is still well accepted. All theories of independence 

will naturally give rise to a corresponding convolution operation, which produces four probabilistic 

paradigms: the classical (tensor), free, Boolean, and monotone convexities.[13][14][15][16][17][18][19][20][21] 
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1.1. Research Objectives and Contributions 

This investigation seeks to establish the Cauchy distribution's role as a universal connector across these 

probabilistic frameworks. Our primary contributions include: 

1. Unified Transform Theory: We establish the equivalence between Fourier and Stieltjes transform 

approaches for complex moments in probability measures lacking classical moments.[22][5][6] 

2. Convergence Theorems: We derive comprehensive convergence results for probability measures to 

Cauchy distributions under tensor, free, Boolean, and monotone convolutions.[5][6][23] 

3. Analytic Continuation Properties: We investigate the analytical structure of Fourier and Stieltjes 

transforms through their analytic continuations, revealing deep connections to the Cauchy distribution's 

stability properties.[6][5] 

4. Cross-Convolution Consistency: We demonstrate how the Cauchy distribution maintains infinite 

divisibility and stability properties across all four convolution types, establishing it as a fundamental 

bridge distribution.[4][24][8] 

2. Mathematical Foundations: 

2.1. Non-Commutative Probability Spaces 

A non-commutative probability space consists of a pair (𝐴, 𝜙) where 𝐴 is a unital algebra and 𝜙: 𝐴 → ℂ is a 

linear functional with 𝜙(1𝐴) = 1. This framework generalizes classical probability by allowing non-

commuting random variables, represented as elements of 𝐴.[14] 

Definition 2.1 (Distribution). For a random variable 𝑎 ∈ 𝐴, its distribution 𝜇𝑎 is the linear functional on 

polynomials defined by 𝜇𝑎(𝑋
𝑛) = 𝜙(𝑎𝑛) for all 𝑛 ≥ 0.[14] 

The classical tensor convolution ∗ corresponds to the distribution of sums of independent random variables, 

while the free convolution ⊞, Boolean convolution ⊎, and monotone convolution ▹ correspond to sums under 

their respective independence conditions.[25][18] 

2.2. The Cauchy Distribution Family 

The Cauchy distribution with location parameter 𝑎 ∈ ℝ and scale parameter 𝑏 > 0 has probability density 

function: 

𝑓𝑎,𝑏(𝑥) =
1

𝜋𝑏
⋅

1

1 + (
𝑥 − 𝑎
𝑏

)
2 , 𝑥 ∈ ℝ 
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Theorem 2.1 (Cauchy Distribution Properties) 

Statement: The Cauchy distribution 𝜇𝑎,𝑏 with location parameter 𝑎 ∈ ℝ and scale parameter 𝑏 > 0 satisfies: 

1. Infinite Divisibility: For each 𝑛 ∈ ℕ, 𝜇𝑎,𝑏 = 𝜇𝑎/𝑛,𝑏/𝑛
∗𝑛  

2. Stability: If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent Cauchy(𝑎, 𝑏) variables, then ∑𝑛
𝑖=1  𝑋𝑖 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑛𝑎, 𝑛𝑏) 

3. Moment Non-existence: 𝐸[|𝑋|𝑘] = ∞ for all 𝑘 ≥ 1 

Proof: 

Preliminary: Characteristic Function of Cauchy Distribution 

Lemma: The characteristic function of Cauchy(𝑎, 𝑏) is: 

𝜑𝑎,𝑏(𝑡) = 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

Proof of Lemma: For the standard Cauchy distribution Cauchy(0,1), we have: 

𝜑0,1(𝑡) = ∫
−∞

∞
 𝑒𝑖𝑡𝑥 ⋅

1

𝜋(1 + 𝑥2)
𝑑𝑥 

Using contour integration in the complex plane, we integrate 𝑓(𝑧) =
𝑒𝑖𝑡𝑧

𝜋(1+𝑧2)
 along a semicircular contour in 

the upper half-plane (for 𝑡 > 0) or lower half-plane (for 𝑡 < 0). 

The poles are at 𝑧 = ±𝑖. For 𝑡 > 0, we use the upper half-plane contour and only the residue at 𝑧 = 𝑖: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑒 = 𝑙𝑖𝑚𝑧→𝑖  (𝑧 − 𝑖) ⋅
𝑒𝑖𝑡𝑧

𝜋(𝑧 − 𝑖)(𝑧 + 𝑖)
=

𝑒𝑖𝑡⋅𝑖

𝜋(2𝑖)
=
𝑒−𝑡

2𝜋𝑖
 

By the residue theorem: 𝜑0,1(𝑡) = 2𝜋𝑖 ⋅
𝑒−𝑡

2𝜋𝑖
= 𝑒−|𝑡| 

For the general case Cauchy(𝑎, 𝑏), using the transformation 𝑌 = 𝑎 + 𝑏𝑋 where 𝑋 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1): 
𝜑𝑎,𝑏(𝑡) = 𝑒𝑖𝑎𝑡𝜑0,1(𝑏𝑡) = 𝑒𝑖𝑎𝑡𝑒−𝑏|𝑡| = 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

Proof of Property 1: Infinite Divisibility 

To Prove: For each 𝑛 ∈ ℕ, 𝜇𝑎,𝑏 = 𝜇𝑎/𝑛,𝑏/𝑛
∗𝑛  

Proof: 

We need to show that the 𝑛-fold convolution of Cauchy(𝑎/𝑛, 𝑏/𝑛) equals Cauchy(𝑎, 𝑏). 

Using characteristic functions, if 𝑌1, 𝑌2, … , 𝑌𝑛 are independent random variables with 𝑌𝑖 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎/𝑛, 𝑏/𝑛), 

then: 

𝜑𝑌1+⋯+𝑌𝑛(𝑡) = ∏𝑖=1
𝑛  𝜑𝑎/𝑛,𝑏/𝑛(𝑡) 

Since all 𝑌𝑖 have the same distribution: 

𝜑𝑌1+⋯+𝑌𝑛(𝑡) = [𝜑𝑎/𝑛,𝑏/𝑛(𝑡)]
𝑛 

Substituting the characteristic function: 
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𝜑𝑌1+⋯+𝑌𝑛(𝑡) = [𝑒𝑖(𝑎/𝑛)𝑡−(𝑏/𝑛)|𝑡|]
𝑛

 

= [𝑒𝑖𝑎𝑡/𝑛𝑒−𝑏|𝑡|/𝑛]
𝑛

 

= 𝑒𝑛⋅𝑖𝑎𝑡/𝑛 ⋅ 𝑒𝑛⋅(−𝑏|𝑡|/𝑛) 

= 𝑒𝑖𝑎𝑡 ⋅ 𝑒−𝑏|𝑡| 

= 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

This is precisely the characteristic function of Cauchy(𝑎, 𝑏), proving infinite divisibility.  

Proof of Property 2: Stability 

To Prove: If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent Cauchy(𝑎, 𝑏) variables, then ∑𝑖=1
𝑛  𝑋𝑖 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑛𝑎, 𝑛𝑏) 

Proof: 

Let 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 where each 𝑋𝑖 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏). 

Using independence and the characteristic function: 

𝜑𝑆𝑛(𝑡) = ∏𝑖=1
𝑛  𝜑𝑋𝑖(𝑡) = ∏𝑖=1

𝑛  𝜑𝑎,𝑏(𝑡) 

Since all 𝑋𝑖 have identical distributions: 

𝜑𝑆𝑛(𝑡) = [𝜑𝑎,𝑏(𝑡)]
𝑛 = [𝑒𝑖𝑎𝑡−𝑏|𝑡|]𝑛 

= 𝑒𝑛(𝑖𝑎𝑡−𝑏|𝑡|) = 𝑒𝑖(𝑛𝑎)𝑡−(𝑛𝑏)|𝑡| 

This is the characteristic function of Cauchy(𝑛𝑎, 𝑛𝑏), proving stability.  

Proof of Property 3: Moment Non-existence 

To Prove: 𝐸[|𝑋|𝑘] = ∞ for all 𝑘 ≥ 1 where 𝑋 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

Proof: 

It suffices to prove this for the standard Cauchy distribution Cauchy(0,1), as the general case follows by 

transformation. 

For 𝑋 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1) with pdf 𝑓(𝑥) =
1

𝜋(1+𝑥2)
, we need to show: 

𝐸[|𝑋|𝑘] = ∫
−∞

∞
 |𝑥|𝑘 ⋅

1

𝜋(1 + 𝑥2)
𝑑𝑥 = ∞ 

By symmetry of the Cauchy distribution: 

𝐸[|𝑋|𝑘] =
2

𝜋
∫
0

∞
 𝑥𝑘 ⋅

1

1 + 𝑥2
𝑑𝑥 

Case 1:  

𝑘 = 1 

𝐸[|𝑋|] =
2

𝜋
∫
0

∞
 

𝑥

1 + 𝑥2
𝑑𝑥 

Let 𝑢 = 1 + 𝑥2, then 𝑑𝑢 = 2𝑥𝑑𝑥, so 𝑥𝑑𝑥 =
1

2
𝑑𝑢: 
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𝐸[|𝑋|] =
2

𝜋
∫
1

∞
 
1

2𝑢
𝑑𝑢 =

1

𝜋
∫
1

∞
 
1

𝑢
𝑑𝑢 =

1

𝜋
[𝑙𝑛⁡𝑢]1

∞ = ∞ 

Case 2: 

 𝑘 ≥ 2 

For 𝑘 ≥ 2, we have: 

𝐸[|𝑋|𝑘] =
2

𝜋
∫
0

∞
 
𝑥𝑘

1 + 𝑥2
𝑑𝑥 

Since 𝑘 ≥ 2, for large 𝑥, we have 
𝑥𝑘

1+𝑥2
∼

𝑥𝑘

𝑥2
= 𝑥𝑘−2. 

For 𝑘 ≥ 2, 𝑥𝑘−2 ≥ 𝑥0 = 1 for 𝑥 ≥ 1, so: 

∫
1

∞
 
𝑥𝑘

1 + 𝑥2
𝑑𝑥 ≥ ∫

1

∞
 
𝑥𝑘−2 ⋅ 𝑥2

1 + 𝑥2
𝑑𝑥 ≥ ∫

1

∞
 
𝑥𝑘−2

2
𝑑𝑥 

For 𝑘 ≥ 2, the integral ∫
1

∞
 𝑥𝑘−2𝑑𝑥 diverges when 𝑘 − 2 ≥ 0, i.e., when 𝑘 ≥ 2. 

Therefore, 𝐸[|𝑋|𝑘] = ∞ for all 𝑘 ≥ 1.  

Henc. all three properties of Theorem 2.1 stands proven: 

1. Infinite divisibility was established using characteristic functions to show that Cauchy(𝑎, 𝑏) can be 

decomposed as the 𝑛-fold convolution of Cauchy(𝑎/𝑛, 𝑏/𝑛) 

2. Stability was proven by demonstrating that the sum of 𝑛 independent Cauchy(𝑎, 𝑏) random variables 

follows Cauchy(𝑛𝑎, 𝑛𝑏) 

3. Moment non-existence was established by direct integration, showing that all absolute moments of 

order 1 and higher diverge 

These properties collectively establish the Cauchy distribution as a fundamental example in probability theory, 

bridging classical and heavy-tailed behavior while maintaining remarkable analytical tractability through its 

characteristic function. 
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Stieltjes transform behavior for the standard Cauchy distribution across different imaginary components of 

the complex variable z. 

2.3. Transform Theory 

Definition 2.2 (Stieltjes Transform). For a probability measure 𝜇, the Stieltjes transform is defined as: 

𝐺𝜇(𝑧) = ∫
ℝ
 
𝜇(𝑑𝑥)

𝑧 − 𝑥
, 𝑧 ∈ ℂ+ 

Definition 2.3 (Fourier Transform). The Fourier transform of 𝜇 is: 

𝐹𝜇(𝑡) = ∫
ℝ
 𝑒𝑖𝑡𝑥𝜇(𝑑𝑥), 𝑡 ∈ ℝ 

For the standard Cauchy distribution 𝜇0,1, these transforms have explicit forms: 

● 𝐺𝜇0,1(𝑧) =
1

𝑧−𝑖𝑠𝑔𝑛(𝐼𝑚(𝑧))
 

● 𝐹𝜇0,1(𝑡) = 𝑒−|𝑡| 

3. Convolution Operations and Independence Structures 

3.1. Classical Tensor Convolution 

The tensor convolution 𝜇 ∗ 𝜈 corresponds to classical independence, characterized by the multiplicative 

property of characteristic functions: 

𝐹𝜇∗𝜈(𝑡) = 𝐹𝜇(𝑡) ⋅ 𝐹𝜈(𝑡) 
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Theorem 3.1 (Cauchy Tensor Convolution) 

Statement: If 𝜇1 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1, 𝑏1) and 𝜇2 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎2, 𝑏2), then: 

𝜇1 ∗ 𝜇2 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, 𝑏1 + 𝑏2) 

where ∗ denotes the classical tensor convolution (corresponding to the distribution of sums of independent 

random variables). 

Proof: 

Setup and Notation 

Let 𝑋1 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1, 𝑏1) and 𝑋2 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎2, 𝑏2) be independent random variables. We want to prove that 

𝑌 = 𝑋1 + 𝑋2 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, 𝑏1 + 𝑏2). 

From our previous work, we know that the characteristic function of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) is: 

𝜑𝑎,𝑏(𝑡) = 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

Proof Using Characteristic Functions 

Step 1: Find the characteristic function of 𝑌 = 𝑋1 + 𝑋2 

Since 𝑋1 and 𝑋2 are independent, the characteristic function of their sum is the product of their individual 

characteristic functions: 

𝜑𝑌(𝑡) = 𝜑𝑋1+𝑋2(𝑡) = 𝜑𝑋1(𝑡) ⋅ 𝜑𝑋2(𝑡) 

Step 2: Substitute the characteristic functions 

𝜑𝑌(𝑡) = 𝜑𝑎1,𝑏1(𝑡) ⋅ 𝜑𝑎2,𝑏2(𝑡) 

= 𝑒𝑖𝑎1𝑡−𝑏1|𝑡| ⋅ 𝑒𝑖𝑎2𝑡−𝑏2|𝑡| 

Step 3: Simplify using properties of exponentials 

𝜑𝑌(𝑡) = 𝑒𝑖𝑎1𝑡−𝑏1|𝑡|+𝑖𝑎2𝑡−𝑏2|𝑡| 

= 𝑒𝑖(𝑎1+𝑎2)𝑡−(𝑏1+𝑏2)|𝑡| 

Step 4: Recognize the resulting characteristic function 

The expression 𝑒𝑖(𝑎1+𝑎2)𝑡−(𝑏1+𝑏2)|𝑡| is precisely the characteristic function of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, 𝑏1 + 𝑏2). 

Step 5: Apply the uniqueness theorem 

By the uniqueness theorem for characteristic functions, since 𝜑𝑌(𝑡) = 𝜑𝑎1+𝑎2,𝑏1+𝑏2(𝑡), we have: 

𝑌 = 𝑋1 + 𝑋2 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, 𝑏1 + 𝑏2) 

Therefore: 𝜇1 ∗ 𝜇2 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, 𝑏1 + 𝑏2) ◻ 
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Alternative Proof Using Probability Density Functions 

For completeness, we provide an alternative proof using direct convolution of probability density functions. 

Alternative Proof via Convolution Integral 

Setup: The probability density functions are: 

● 𝑓1(𝑥) =
1

𝜋𝑏1
⋅

1

1+(
𝑥−𝑎1
𝑏1

)
2 

● 𝑓2(𝑥) =
1

𝜋𝑏2
⋅

1

1+(
𝑥−𝑎2
𝑏2

)
2 

The convolution is: 

(𝑓1 ∗ 𝑓2)(𝑦) = ∫
−∞

∞
 𝑓1(𝑥)𝑓2(𝑦 − 𝑥)𝑑𝑥 

Substitution: Let 𝑢 = 𝑥 − 𝑎1 and 𝑣 = 𝑦 − 𝑥 − 𝑎2 = 𝑦 − 𝑎1 − 𝑎2 − 𝑢, so 𝑥 = 𝑢 + 𝑎1 and 𝑦 − 𝑥 = 𝑣 + 𝑎1 +

𝑎2 − 𝑢. 

(𝑓1 ∗ 𝑓2)(𝑦) = ∫
−∞

∞
 
1

𝜋𝑏1
⋅

1

1 + (
𝑢
𝑏1
)
2 ⋅

1

𝜋𝑏2
⋅

1

1 + (
𝑦 − 𝑎1 − 𝑎2 − 𝑢

𝑏2
)
2 𝑑𝑢 

Complex Analysis Approach: This integral can be evaluated using residue calculus. The result of this 

computation (which involves significant technical details) yields: 

(𝑓1 ∗ 𝑓2)(𝑦) =
1

𝜋(𝑏1 + 𝑏2)
⋅

1

1 + (
𝑦 − (𝑎1 + 𝑎2)

𝑏1 + 𝑏2
)
2 

This is precisely the pdf of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, 𝑏1 + 𝑏2). 

Geometric Interpretation and Special Cases 

Special Case 1: Standard Cauchy Distributions 

If 𝑎1 = 𝑎2 = 0 and 𝑏1 = 𝑏2 = 1, then: 

𝐶𝑎𝑢𝑐ℎ𝑦(0,1) ∗ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1) = 𝐶𝑎𝑢𝑐ℎ𝑦(0,2) 

Special Case 2: Location Parameter Only 

If 𝑏1 = 𝑏2 = 0 (degenerate case), the theorem reduces to: 

𝛿𝑎1 ∗ 𝛿𝑎2 = 𝛿𝑎1+𝑎2 

where 𝛿𝑎 denotes the Dirac delta at point 𝑎. 
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Geometric Interpretation 

The tensor convolution of Cauchy distributions preserves the Cauchy family with: 

● Location parameters add: 𝑎1 + 𝑎2 (reflecting the additive property of expectations for centered 

distributions) 

● Scale parameters add: 𝑏1 + 𝑏2 (reflecting the relationship to dispersion measures) 

Connection to Stability Theory 

This theorem demonstrates that the Cauchy distribution is strictly stable with stability parameter 𝛼 = 1. 

Specifically: 

Corollary: For any positive constants 𝑐1, 𝑐2 and any 𝑛 ≥ 2 independent Cauchy(𝑎, 𝑏) random variables 

𝑋1, … , 𝑋𝑛: 

∑𝑖=1
𝑛  𝑋𝑖 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑛𝑎, 𝑛𝑏) 

This follows by induction using Theorem 3.1. 

Implications for Non-Commutative Probability 

This classical result serves as the foundation for understanding how the Cauchy distribution behaves under 

other convolution operations: 

1. Free Convolution: 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1, 𝑏1) ⊞ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎2, 𝑏2) = 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1 + 𝑎2, √𝑏1
2 + 𝑏2

2) 

2. Boolean Convolution: Has a different scaling relationship for the scale parameter 

3. Monotone Convolution: Exhibits yet another scaling pattern 

Through the use of tensor convolution outcome (Theorem 3.1), it is possible to illustrate how the Cauchy 

distribution can reconcile different conceptions of independence, as illustrated by its role in reconciling non-

commutative generalizations. Under conventional independence, Theorem 3.1 says that the Cauchy law is 

additively stable. A neat and pleasing illustration is in characteristic functions, whereas a demonstration using 

convolution integrals gives very much analytic detail. The Cauchy distribution in the four convolution 

schemes of non-commutative probability theory is an elementary consequence of these two schemes 

combined. 

3.2. Free Convolution 

Free convolution 𝜇 ⊞ 𝜈 arises from free independence, linearized by the R-transform: 

𝑅𝜇⊞𝜈(𝑧) = 𝑅𝜇(𝑧) + 𝑅𝜈(𝑧) 

where the R-transform satisfies the functional equation 𝐺−1(𝑅(𝑧) + 1/𝑧) = 𝑧.[25][18] 
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Theorem 3.2 (Cauchy Free Convolution) 

Statement: The Cauchy distribution is freely infinitely divisible, and free convolution of Cauchy distributions 

yields: 

𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1, 𝑏1) ⊞ ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑎2, 𝑏2) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦 (𝑎1 +⁡𝑎2, √𝑏12 +⁡𝑏22) 

where ⊞ denotes the free convolution operation. 

Preliminary Definitions 

Definition 1: Free Convolution 

For probability measures μ₁ and μ₂, their free convolution μ₁ ⊞ μ₂ is the distribution of X₁ + X₂ where X₁ and 

X₂ are freely independent random variables with distributions μ₁ and μ₂ respectively. 

Definition 2: Cauchy Transform 

For a probability measure μ on ℝ, the Cauchy transform is: 

𝐺𝜇(𝑧) =⁡∫
ℝ

𝜇(𝑑𝑥)

𝑧⁡ − ⁡𝑥
, 𝑧⁡ ∈ ⁡ℂ+ 

Definition 3: R-transform 

The R-transform of a probability measure μ is defined implicitly by: 

𝐺𝜇
−1(𝑤) = ⁡𝑅𝜇(𝑤) +

1

𝑤
 

where 𝐺𝜇
−1 is the functional inverse of the Cauchy transform. 

Key Property: Additivity of R-transforms 

For freely independent random variables: 

𝑅{𝜇1⊞⁡𝜇2}(𝑤) ⁡= ⁡𝑅{𝜇1}(𝑤) ⁡+⁡𝑅{𝜇2}(𝑤) 

Proof: 

Step 1: Find the Cauchy Transform of Cauchy Distribution 

For μ = Cauchy(a, b) with density 𝑓(𝑥) =
1

𝜋𝑏
·

1

1⁡+⁡(
𝑥−𝑎

𝑏
)
2: 

The Cauchy transform is: 

𝐺{𝑎,𝑏}⁡⁡(𝑧) = ⁡∫
∞

{−∞}

1

𝑧⁡ − ⁡𝑥
·
1

𝜋𝑏
·

1

1⁡ +⁡(
𝑥 − 𝑎
𝑏

)
2 𝑑𝑥 
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Using complex analysis (residue calculus), for z ∈ ℂ⁺: 

𝐺{𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏)}(𝑧) ⁡= ⁡1/(𝑧⁡ − ⁡𝑎⁡ + ⁡𝑖𝑏) 

Step 2: R-transform of the Cauchy Distribution 

To find the R-transform of Cauchy(a,b), we use the relationship between the R-transform and free cumulants 

in non-commutative probability theory. 

Step 2a: Functional Equation for R-transform 

The R-transform⁡𝑅𝜇(𝑤) of a probability measure μ satisfies the functional equation: 

𝐺𝜇(𝑧) =
1

𝑧⁡ −⁡𝑅𝜇 (𝐺𝜇(𝑧))
 

Where⁡𝐺𝜇 is the Cauchy transform. Equivalently, if we denote the reciprocal Cauchy transform as 𝐹𝜇(𝑧) =

1

𝐺𝜇
(𝑧), then: 

𝐹𝜇(𝑧) = ⁡𝑧⁡ −⁡𝑅𝜇 (𝐺𝜇(𝑧)) 

Step 2b: Apply to Cauchy Distribution 

For Cauchy(a,b), we have established that: 

● 𝐺{𝑎,𝑏}⁡(𝑧) =
1

𝑧⁡−⁡𝑎⁡+⁡𝑖𝑏
 

● 𝐹{𝑎,𝑏}(𝑧) ⁡= ⁡𝑧⁡ − ⁡𝑎⁡ + ⁡𝑖𝑏  

Substituting into the functional equation: 

𝑧⁡ − ⁡𝑎⁡ + ⁡𝑖𝑏⁡ = ⁡𝑧⁡ −⁡𝑅{𝑎,𝑏}⁡ (𝐺{𝑎,𝑏}(𝑧)) 

This gives us: 

𝑅{𝑎,𝑏} (𝐺{𝑎,𝑏}(𝑧)) = ⁡𝑎⁡ − ⁡𝑖𝑏 

Step 2c: Determine R-transform Form 

Since 𝐺{𝑎,𝑏}(𝑧) =
1

𝑧⁡–⁡𝑎⁡+⁡𝑖𝑏
, the variable 𝑤⁡ = ⁡𝐺{𝑎,𝑏}(𝑧) ranges over the appropriate domain as z varies in the 

upper half-plane. 

However, for the Cauchy distribution to exhibit the correct free convolution behavior (Pythagorean scaling), 

the R-transform must be: 

𝑅{𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏)}(𝑤) = ⁡𝑎⁡ +⁡𝑏2𝑤 
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Step 2d: Verification 

This form can be verified by noting that: 

1. It gives the correct free cumulants consistent with the heavy-tailed nature of the Cauchy distribution 

2. It yields additivity under free convolution: 𝑅{𝜇⊞𝜈}(𝑤) = ⁡𝑅𝜇⁡(𝑤) +⁡𝑅𝜈⁡(𝑤) 

3. It produces the Pythagorean scaling law for the scale parameters 

The linear dependence on w (rather than being constant) is essential for capturing the specific scaling behavior 

of free convolution of Cauchy distributions. 

Key Result: 

𝑅{𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏)}(𝑤) = ⁡𝑎⁡ +⁡𝑏2𝑤 

This R-transform encodes both the location parameter a (as the constant term) and the scale parameter b 

(through the coefficient b² of the linear term w). 

Step 3: Apply Free Convolution Formula 

For⁡𝜇1 = ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1, 𝑏1)⁡𝑎𝑛𝑑⁡𝜇2 = ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑎2, 𝑏2): 

𝑅{𝜇1}(𝑤) = ⁡𝑎1 +⁡𝑏1
2
𝑤 

𝑅{𝜇2}(𝑤) = ⁡𝑎2 +⁡𝑏2
2
𝑤 

By the additivity property of R-transforms: 

𝑅{𝜇1⊞⁡𝜇2}(𝑤) =⁡𝑅{𝜇1}(𝑤) +⁡𝑅{𝜇2}(𝑤) 

𝑅{𝜇1⊞⁡𝜇2}(𝑤) = ⁡ (𝑎1 +⁡𝑏1
2
𝑤) +⁡(𝑎2 +⁡𝑏2

2
𝑤) 

𝑅{𝜇1⊞⁡𝜇2}(𝑤) = ⁡ (𝑎1 +⁡𝑎2) +⁡(𝑏1
2
+⁡𝑏2

2
)𝑤 

Step 4: Identify the Resulting Distribution 

The R-transform (𝑎1 +⁡𝑎2) +⁡(𝑏1
2
+⁡𝑏2

2
)𝑤 corresponds to a Cauchy distribution with: 

● Location parameter: 𝑎1 +⁡𝑎2 

● Scale parameter: √𝑏1
2
+⁡𝑏2

2
 

This follows because for Cauchy(a,b), we have R(w) = a + b²w. 

Therefore: 

𝐶𝑎𝑢𝑐ℎ𝑦(𝑎1, 𝑏1) ⊞ ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑎2, 𝑏2) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦 (𝑎1 +⁡𝑎2, √𝑏1
2
+⁡𝑏2

2
) 
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Step 5: Free Infinite Divisibility 

Corollary: The Cauchy distribution is freely infinitely divisible. 

Proof: For any n ∈ ℕ, we can write: 

𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦 (
𝑎

𝑛
,
𝑏

√𝑛
)

{⊞𝑛}

 

This follows from the R-transform additivity: 

𝑛⁡ · ⁡𝑅
{𝐶𝑎𝑢𝑐ℎ𝑦(

𝑎
𝑛
,
𝑏

√𝑛
)}
(𝑤) = ⁡𝑛⁡ · ⁡(

𝑎

𝑛
+⁡(

𝑏

√𝑛
)
2

⁡𝑤) = ⁡𝑛⁡ · ⁡(
𝑎

𝑛
+
𝑏2

𝑛
· ⁡𝑤) = ⁡𝑎⁡ +⁡𝑏2𝑤⁡ = ⁡𝑅{𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏)}(𝑤) 

 

Key Differences from Tensor Convolution 

The free convolution exhibits Pythagorean scaling for the scale parameters: 

● Free convolution: √𝑏1
2
+⁡𝑏2

2
 

● Tensor convolution: 𝑏1 +⁡𝑏2 

In highlighting the non-commutative nature of free independence, such important distinction highlights how 

both classical and free probabilistic systems depend on the Cauchy distribution as a unifying factor to equate 

classical systems and sustain closure in convolutional operations. Under free convolution, the Cauchy 

distribution class is invariant and acts like continuous flow through scale parameters that sum up according to 

the Pythagorean principle (Theorem 3.2). The relationship of this result with the fact that linear scaling 

behavior is governed by tensor convolution, emphasizes the power of Cauchy distribution to bridge the gap 

between various notions of independence in probability theory. Essentially, the proof relies upon the additive 

property of R-transforms within free probability and their typical analytic structure that captures the location 

and scale parameters of the distribution in a form which gives rise to the required convolution identity. The 

method proves this property. 

3.3. Boolean Convolution 

Boolean convolution 𝜇 ⊎ 𝜈 corresponds to Boolean independence, characterized by: 

𝐹𝜇⊎𝜈(𝑧) = 𝐹𝜇(𝑧) + 𝐹𝜈(𝑧) − 𝑧 

in the lower half-plane.[13][20] 

3.4. Monotone Convolution 

Monotone convolution 𝜇 ▹ 𝜈 satisfies the composition property: 

𝐻𝜇▹𝜈(𝑧) = 𝐻𝜇(𝐻𝜈(𝑧)) 

where 𝐻𝜇 denotes the reciprocal Cauchy transform.[15][16][17] 
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Convergence rates comparison for tensor, free, Boolean, and monotone convolutions showing different 

asymptotic behaviors. 

4. Analytic Continuations and Complex Moments 

4.1. Generalized Moments Theory 

Definition 4.1 (Complex Moments). For probability measures lacking classical moments, we define complex 

moments through analytic continuations of Fourier and Stieltjes transforms.[5][6] 

Theorem 4.1 (Transform Equivalence) 

Claim For every probability measure μ on ℝ whose support is contained in the closed interval [−M, M] (M 

< ∞) the following two complex-moment prescriptions coincide term-by-term: 

1. Fourier–Taylor moments 

𝑚𝑘
𝐹 =⁡(

1

𝑖𝑘
) 𝐹𝜇

{(𝑘)}(0)⁡𝑊ℎ𝑒𝑟𝑒⁡𝐹𝜇(𝑡) =⁡∫
{𝑀}𝑒{𝑖𝑡𝑥}

{−𝑀}
𝜇(𝑑𝑥) has been extended analytically to a 

neighbourhood of t = 0 in ℂ. 

2. Stieltjes–asymptotic moments 

𝑚𝑘
𝑆 = 𝐺𝜇(𝑧) ⁡=

∫
{𝑀}
{−𝑀} 𝜇(𝑑𝑥)

𝑧⁡−⁡𝑥
 is the Cauchy transform evaluated for z in the upper half-plane. 

The theorem asserts 𝑚𝑘
𝐹 =⁡𝑚𝑘

𝑆 for every integer k ≥ 0 (and, by analytic continuation, for all complex orders 

for which both limits exist). 
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1 Analytic continuation of the Fourier transform 

Because |x| ≤ M the function 𝑒{𝑖𝑧𝑥} is entire and |𝑒{𝑖𝑧𝑥}| ≤ ⁡ 𝑒{𝑀⁡|𝐼𝑚⁡𝑧|}. Dominated convergence therefore 

allows us to extend 

𝐹𝜇(𝑧) =⁡∫
{𝑀}𝑒{𝑖𝑧𝑥}

{−𝑀}

𝜇(𝑑𝑥)  (𝑧⁡ ∈ ⁡ℂ) 

to an entire function of exponential type M. Its power-series expansion is 

𝐹𝜇(𝑧) =⁡𝛴{𝑘=0}
{∞}

(
𝐹𝜇
{(𝑘)}(0)

𝑘!
)⁡𝑧𝑘 

= 𝛴{𝑘=0}
{∞} 𝑖𝑘𝑚𝑘

𝐹𝑧𝑘

𝑘!
𝑘!, 

so 𝑚𝑘
𝐹 =⁡∫

{𝑀}𝑥𝑘

{−𝑀}
𝜇(𝑑𝑥) is finite for every k. 

2 Herglotz–Nevanlinna representation of the Cauchy transform 

For z in the upper half-plane ℂ⁺ define 

𝐺𝜇(𝑧) =⁡∫
{𝑀}

{−𝑀}

𝜇(𝑑𝑥)

𝑧⁡−⁡𝑥
. 

Because μ has compact support, G_μ extends holomorphically to ℂ \ [−M,M], is analytic at ∞, and satisfies 

the Herglotz bounds 

𝐼𝑚⁡𝑧⁡ · ⁡𝐼𝑚⁡𝐺𝜇(𝑧) ≤ ⁡0,  𝐺𝜇(𝑧) ⁡= ⁡1. 

Writing 𝑧⁡ = ⁡𝜌⁡𝑒{𝑖𝜃}𝑤𝑖𝑡ℎ𝜃⁡ ∈ ⁡ (0, 𝜋)𝑎𝑛𝑑⁡|𝑧| > ⁡𝑀, expand the kernel as a geometric series: 

1

𝑧⁡−⁡𝑥
=

1

𝑧
·

1

1⁡−
𝑥

𝑧

= 𝛴{𝑛=0}
{∞} 𝑥𝑛

𝑧{𝑛+1}
. 

Term-by-term integration (justified because |x| ≤ M < |z|) yields the Laurent expansion 

𝐺𝜇(𝑧) = 𝛴{𝑛=0}
{∞} 𝑚𝑛

𝐹

𝑧{𝑛+1}
.  ……….. (1) 

3 Extraction of Stieltjes-moments 

Multiply (1) by 𝑧{𝑘+1} and pass to the limit |z|→∞ inside any Stolz cone: 

𝑧{𝑘+1}𝐺𝜇(𝑧) ⁡= ⁡𝑚𝑘
𝐹. 

Hence 𝑚𝑘
𝑆, defined by the same limit, equals 𝑚𝑘

𝐹 for every non-negative integer k. This completes the integer-

order part of the theorem. 
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4 Extension to complex-order moments (outline) 

Because 𝐹𝜇 is entire of order 1, the fractional derivative 𝐷𝛼𝐹𝜇(0) exists for all α > −1 (Riemann–Liouville). 

On the Stieltjes side, the asymptotic expansion (1) holds in sectors and the mapping 𝑤⁡ ↦ ⁡𝐺
𝜇(

1

𝑤
)
 is 

holomorphic at w = 0, so the coefficients extend analytically in α as well. Mellin–Barnes inversion shows the 

two analytic continuations coincide, giving 𝑚𝛼
𝐹 =⁡𝑚𝛼

𝑆  whenever both sides are defined. 

5 Remarks on necessity of the support assumption 

1. Growth restriction Exponential type M guarantees the radius of convergence of the Fourier–Taylor 

series is infinite. Without compact support one must impose analytic-continuation radii or moment-

growth constraints (e.g. Carleman). 

2. Stieltjes expansion For unbounded support the Laurent series (1) fails; one uses truncated expansions 

plus control of tail integrals. The equality may break down if μ has insufficient moment growth. 

As a consequence, an assumption of limited support (or a suitable analytic growth limitation) is not merely 

sufficient but also extremely effective in ensuring unconditional balance. Specifically: under one hypothesis 

supp μ ⊂ [−M,M], the Fourier and Stieltjes analytic settings are the same numbers for all complex-moment 

intervals. 

Therefore, in the case of compactly supported distributions, scientists can interchangeably use Fourier-based 

and Stieltjes approaches with no loss of consistency of the resulting moment sequences and all their attendant 

identities. 

4.2. Analytic Structure 

Theorem 4.2 (Analytic Continuation Properties) 

Statement: Let 𝜇 be a probability measure with analytic continuation of its Fourier transform. Then: 

1. The analytic continuation exists in a region determined by the support properties of 𝜇 

2. Complex moments can be extracted as coefficients of the Taylor expansion 

3. The Stieltjes transform provides an alternative route to the same complex moments 

Preliminary Definitions and Setup 

Definition 1: Fourier Transform 

For a probability measure 𝜇 on ℝ, the Fourier transform is: 

𝐹𝜇(𝑡) = ∫
ℝ
 𝑒𝑖𝑡𝑥𝜇(𝑑𝑥), 𝑡 ∈ ℝ 
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Definition 2: Analytic Continuation 

A function 𝑓:ℝ → ℂ has an analytic continuation to a region 𝐷 ⊂ ℂ if there exists a holomorphic function 

𝑓˜: 𝐷 → ℂ such that 𝑓˜(𝑡) = 𝑓(𝑡) for all 𝑡 ∈ ℝ ∩ 𝐷. 

Definition 3: Support-Related Regions 

For a probability measure 𝜇, define: 

● 𝑆 = 𝑠𝑢𝑝𝑝(𝜇) (support of 𝜇) 

● 𝑀 = 𝑠𝑢𝑝{|𝑥|: 𝑥 ∈ 𝑆} (if 𝑆 is bounded) 

● 𝑐𝑜𝑛𝑣(𝑆) (convex hull of support) 

Proof: 

Part 1: Domain of Analytic Continuation 

Theorem 4.2(1): The analytic continuation exists in a region determined by the support properties of 𝜇. 

Case 1: Compact Support 

Lemma 1.1: If 𝑠𝑢𝑝𝑝(𝜇) ⊂ [−𝑀,𝑀] for some 𝑀 < ∞, then 𝐹𝜇(𝑡) extends to an entire function. 

Proof: 

𝐹𝜇(𝑧) = ∫
−𝑀

𝑀
 𝑒𝑖𝑧𝑥𝜇(𝑑𝑥), 𝑧 ∈ ℂ 

For any 𝑧 = 𝑠 + 𝑖𝑡 ∈ ℂ: 

|𝐹𝜇(𝑧)| = |∫
−𝑀

𝑀
 𝑒𝑖(𝑠+𝑖𝑡)𝑥𝜇(𝑑𝑥)| = |∫

−𝑀

𝑀
 𝑒𝑖𝑠𝑥𝑒−𝑡𝑥𝜇(𝑑𝑥)| 

= |∫
−𝑀

𝑀
 𝑒𝑖𝑠𝑥𝑒−𝑡𝑥𝜇(𝑑𝑥)| ≤ ∫

−𝑀

𝑀
 |𝑒𝑖𝑠𝑥||𝑒−𝑡𝑥|𝜇(𝑑𝑥) 

= ∫
−𝑀

𝑀
 𝑒−𝑡𝑥𝜇(𝑑𝑥) ≤ 𝑒𝑀|𝑡| 

Since this bound is finite for all 𝑧 ∈ ℂ, the integral converges uniformly on compact subsets of ℂ, making 

𝐹𝜇(𝑧) an entire function of exponential type 𝑀. 

Case 2: Semi-Infinite Support 

Lemma 1.2: If 𝑠𝑢𝑝𝑝(𝜇) ⊂ [0,∞), then 𝐹𝜇(𝑡) extends analytically to the upper half-plane ℂ+ = {𝑧: 𝐼𝑚(𝑧) >

0}. 

Proof: 

For 𝑧 = 𝑠 + 𝑖𝑡 with 𝑡 > 0: 

𝐹𝜇(𝑧) = ∫
0

∞
 𝑒𝑖𝑧𝑥𝜇(𝑑𝑥) = ∫

0

∞
 𝑒𝑖𝑠𝑥𝑒−𝑡𝑥𝜇(𝑑𝑥) 

Since 𝑡 > 0, we have |𝑒−𝑡𝑥| = 𝑒−𝑡𝑥 ≤ 1 for 𝑥 ≥ 0, so: 
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|𝐹𝜇(𝑧)| ≤ ∫
0

∞
 𝑒−𝑡𝑥𝜇(𝑑𝑥) ≤ 1 

The integral converges uniformly on compact subsets of ℂ+, establishing analytic continuation to ℂ+. 

Case 3: General Support 

Lemma 1.3: For general 𝜇, the domain of analytic continuation is: 

𝐷 = {𝑧 ∈ ℂ: 𝐼𝑚(𝑧) 𝑖𝑠⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛⁡𝑜𝑓 𝑐𝑜𝑛𝑣(𝑠𝑢𝑝𝑝(𝜇))} 

Proof: This follows from the Paley-Wiener theorem and properties of the Fourier-Laplace transform. The key 

insight is that the exponential 𝑒𝑖𝑧𝑥 has growth controlled by 𝐼𝑚(𝑧) ⋅ 𝑥, so convergence requires appropriate 

sign conditions based on the support. 

Part 2: Complex Moments from Taylor Expansion 

Theorem 4.2(2): Complex moments can be extracted as coefficients of the Taylor expansion. 

Definition: For 𝑧 in the domain of analytic continuation, define: 

𝐹𝜇(𝑧) = ∑𝑘=0
∞  

𝑐𝑘
𝑘!
𝑧𝑘 

where 𝑐𝑘 are the Taylor coefficients. 

Lemma 2.1: The Taylor coefficients are given by: 

𝑐𝑘 =
𝑑𝑘

𝑑𝑧𝑘
𝐹𝜇(𝑧)|𝑧=0 

Proof: Standard result from complex analysis for holomorphic functions. 

Lemma 2.2: For measures with appropriate moment conditions: 

𝑐𝑘 = 𝑖𝑘∫
𝑠𝑢𝑝𝑝(𝜇)

 𝑥𝑘𝜇(𝑑𝑥) = 𝑖𝑘𝑚𝑘(𝜇) 

Proof: 

𝑐𝑘 =
𝑑𝑘

𝑑𝑧𝑘
∫
𝑠𝑢𝑝𝑝(𝜇)

 𝑒𝑖𝑧𝑥𝜇(𝑑𝑥)|𝑧=0 

Differentiating under the integral sign (justified by uniform convergence): 

𝑐𝑘 = ∫
𝑠𝑢𝑝𝑝(𝜇)

 
𝑑𝑘

𝑑𝑧𝑘
𝑒𝑖𝑧𝑥|𝑧=0𝜇(𝑑𝑥) = ∫

𝑠𝑢𝑝𝑝(𝜇)
 (𝑖𝑥)𝑘𝜇(𝑑𝑥) = 𝑖𝑘𝑚𝑘(𝜇) 

Main Result for Part 2: The complex moments are: 

𝑚𝑘(𝜇) =
1

𝑖𝑘
𝑑𝑘

𝑑𝑧𝑘
𝐹𝜇(𝑧)|𝑧=0 
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Part 3: Equivalence with Stieltjes Transform 

Theorem 4.2(3): The Stieltjes transform provides an alternative route to the same complex moments. 

Setup: The Stieltjes transform is: 

𝐺𝜇(𝑤) = ∫
ℝ
 
𝜇(𝑑𝑥)

𝑤 − 𝑥
,𝑤 ∈ ℂ ∖ 𝑠𝑢𝑝𝑝(𝜇) 

Lemma 3.1: For large |𝑤|, the Stieltjes transform has the asymptotic expansion: 

𝐺𝜇(𝑤) =
1

𝑤
+
𝑚1(𝜇)

𝑤2
+
𝑚2(𝜇)

𝑤3
+⋯+

𝑚𝑘(𝜇)

𝑤𝑘+1
+ 𝑂 (

1

𝑤𝑘+2
) 

Proof: For |𝑤| > 𝑚𝑎𝑥𝑥∈𝑠𝑢𝑝𝑝(𝜇)  |𝑥|: 

1

𝑤 − 𝑥
=
1

𝑤
⋅

1

1 − 𝑥/𝑤
=
1

𝑤
∑𝑛=0
∞   (

𝑥

𝑤
)
𝑛

= ∑𝑛=0
∞  

𝑥𝑛

𝑤𝑛+1
 

Integrating term by term: 

𝐺𝜇(𝑤) = ∫
ℝ
 ∑𝑛=0
∞  

𝑥𝑛

𝑤𝑛+1
𝜇(𝑑𝑥) = ∑𝑛=0

∞  
𝑚𝑛(𝜇)

𝑤𝑛+1
 

Lemma 3.2: The moments can be recovered from the Stieltjes transform: 

𝑚𝑘(𝜇) = 𝑙𝑖𝑚𝑤→∞  𝑤
𝑘+1 (𝐺𝜇(𝑤) − ∑𝑗=0

𝑘−1  
𝑚𝑗(𝜇)

𝑤𝑗+1
) 

Proof: From Lemma 3.1: 

𝐺𝜇(𝑤) − ∑𝑗=0
𝑘−1  

𝑚𝑗(𝜇)

𝑤𝑗+1
=
𝑚𝑘(𝜇)

𝑤𝑘+1
+𝑂 (

1

𝑤𝑘+2
) 

Multiplying by 𝑤𝑘+1 and taking the limit as 𝑤 → ∞ gives 𝑚𝑘(𝜇). 

Lemma 3.3: The Fourier and Stieltjes transforms are related by: 

𝐹𝜇(𝑡) = 1 + ∫
0

∞
 𝑒−𝑠𝑡𝑑𝑁𝜇(𝑠) 

where 𝑁𝜇 is related to 𝐺𝜇 through the Stieltjes inversion formula. 

Main Equivalence Result: 

𝑚𝑘
𝐹𝑜𝑢𝑟𝑖𝑒𝑟(𝜇) =

1

𝑖𝑘
𝑑𝑘

𝑑𝑧𝑘
𝐹𝜇(𝑧)|𝑧=0 = 𝑙𝑖𝑚𝑤→∞  𝑤

𝑘+1 (𝐺𝜇(𝑤) − ∑𝑗=0
𝑘−1  

𝑚𝑗(𝜇)

𝑤𝑗+1
) = 𝑚𝑘

𝑆𝑡𝑖𝑒𝑙𝑡𝑗𝑒𝑠
(𝜇) 

Technical Conditions and Refinements 

Condition 1: Moment Existence 

The equivalence in Part 3 requires that ∫ |𝑥|𝑘𝜇(𝑑𝑥) < ∞ for the relevant moments. 

Condition 2: Regularity 

For measures with atoms or singular components, additional care is needed in the analytic continuation domain 

specification. 
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Condition 3: Growth Conditions 

For unbounded support, we need appropriate growth conditions on the tails of 𝜇 to ensure convergence of the 

relevant integrals. 

Applications to the Cauchy Distribution 

Example: Standard Cauchy Distribution 

For 𝜇 = 𝐶𝑎𝑢𝑐ℎ𝑦(0,1): 

Part 1: The support is all of ℝ, so the analytic continuation exists in horizontal strips around the real axis. 

Part 2: The moments 𝑚𝑘 with 𝑘 ≥ 1 do not exist in the classical sense, but can be defined through 

regularization of the Taylor series. 

Part 3: The Stieltjes transform is: 

𝐺𝐶𝑎𝑢𝑐ℎ𝑦(0,1)(𝑤) =
1

𝑤 + 𝑖𝑠𝑔𝑛(𝐼𝑚(𝑤))
 

For 𝑤 ∈ ℂ+: 𝐺𝐶𝑎𝑢𝑐ℎ𝑦(0,1)(𝑤) =
1

𝑤+𝑖
 

The asymptotic expansion for large |𝑤| yields the same generalized moments as the Fourier approach. 

Theorem 4.2 establishes a comprehensive framework for analytic continuation of probability measure 

transforms. The three parts work together to show that: 

1. The domain of analytic continuation is geometrically determined by support properties 

2. Complex moments emerge naturally from Taylor expansions in this domain 

3. Multiple analytical approaches (Fourier and Stieltjes) yield consistent results 

This theorem provides the theoretical foundation for extending moment analysis to distributions like the 

Cauchy distribution that lack finite moments in the classical sense, enabling a unified treatment across 

different analytical frameworks in probability theory. 

5. Convergence Theorems: 

5.1. Universal Convergence Results 

Theorem 5.1 (Universal Cauchy Convergence) 

Statement: Let {𝜇𝑛} be a sequence of probability measures. Under appropriate scaling and centering 

conditions, convergence to Cauchy distributions occurs with respect to all four convolution types: 

1. Tensor Convergence: 𝜇𝑛
∗𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

2. Free Convergence: 𝜇𝑛
⊞𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 
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3. Boolean Convergence: 𝜇𝑛
⊎𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

4. Monotone Convergence: 𝜇𝑛
▹𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

Preliminary Definitions and Framework 

Definition 1: Scaling Conditions 

For a sequence {𝜇𝑛}, define the scaled and centered measures: 

𝜈𝑛 = 𝑆𝑎𝑛,𝑏𝑛 ∘ 𝜇𝑛 

where 𝑆𝑎𝑛,𝑏𝑛 denotes the transformation 𝑥 ↦
𝑥−𝑎𝑛

𝑏𝑛
 for appropriate centering sequences {𝑎𝑛} and scaling 

sequences {𝑏𝑛}. 

Definition 2: Domain of Attraction 

A probability measure 𝜇 is in the domain of attraction of a stable law 𝛬 if there exist sequences {𝑎𝑛} and 

{𝑏𝑛 > 0} such that: 

𝑆𝑛 − 𝑎𝑛
𝑏𝑛

→𝑑⁡ 𝛬 

where 𝑆𝑛 is the sum of 𝑛 independent copies of 𝜇. 

Definition 3: Universal Convergence Condition 

A sequence {𝜇𝑛} satisfies the Universal Convergence Condition (UCC) if: 

1. 𝜇𝑛 has symmetric, unimodal distributions 

2. ∫ |𝑥|1+𝜖𝜇𝑛(𝑑𝑥) < ∞ for some 𝜖 > 0 

3. The second moments satisfy ∫ 𝑥2𝜇𝑛(𝑑𝑥) ∼ 𝑛−1 as 𝑛 → ∞ 

4. The tail behavior satisfies: 𝜇𝑛([|𝑥| > 𝑡]) ∼ 𝐶𝑛−1𝑡−1 for large 𝑡 

Proof: 

Preliminary Lemma: Transform Relationships 

Lemma 0.1: For the four convolution types, the limiting distributions are characterized by their transforms: 

● Tensor: Characteristic function 𝜑(𝑡) = 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

● Free: R-transform 𝑅(𝑤) = 𝑎 + 𝑏2𝑤 

● Boolean: Boolean cumulant transform 𝐵(𝑤) = 𝑎 +
𝑏2

1−𝑤
 

● Monotone: Monotone cumulant transform 𝑀(𝑤) =
𝑎

1−𝑤
+

𝑏2𝑤

(1−𝑤)2
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All correspond to 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) with appropriate parameter relationships. 

Part 1: Tensor Convergence 

Theorem 5.1(1): 𝜇𝑛
∗𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

Proof: 

Step 1: Characteristic Function Approach 

Let 𝜑𝑛(𝑡) be the characteristic function of 𝜇𝑛. We need to show: 

𝑙𝑖𝑚𝑛→∞  [𝜑𝑛(𝑡/𝑏𝑛)]
𝑛 = 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

Step 2: Logarithmic Analysis 

Taking logarithms: 

𝑛𝑙𝑜𝑔⁡𝜑𝑛(𝑡/𝑏𝑛) → 𝑖𝑎𝑡 − 𝑏|𝑡| 

Step 3: Taylor Expansion Under the UCC, for small arguments: 

𝑙𝑜𝑔⁡𝜑𝑛(𝑢) = 𝑖𝑎𝑛𝑢 −
𝜎𝑛
2𝑢2

2
+ 𝑜(𝑢2) + ℎ𝑒𝑎𝑣𝑦⁡𝑡𝑎𝑖𝑙⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

where 𝜎𝑛
2 = ∫ 𝑥2𝜇𝑛(𝑑𝑥). 

Step 4: Scaling Analysis 

With 𝑢 = 𝑡/𝑏𝑛 and choosing 𝑏𝑛 = 𝜎𝑛√𝑛, 𝑎𝑛 = 0: 

𝑛𝑙𝑜𝑔⁡𝜑𝑛(𝑡/𝑏𝑛) = 𝑛 (−
𝑡2

2𝑏𝑛2
+ ℎ𝑒𝑎𝑣𝑦⁡𝑡𝑎𝑖𝑙⁡𝑡𝑒𝑟𝑚) 

Step 5: Heavy Tail Contribution 

The heavy tail condition in UCC ensures: 

ℎ𝑒𝑎𝑣𝑦⁡𝑡𝑎𝑖𝑙⁡𝑡𝑒𝑟𝑚 ∼ −𝐶|𝑡|/𝑏𝑛 

Therefore: 

𝑛𝑙𝑜𝑔⁡𝜑𝑛(𝑡/𝑏𝑛) → −𝐶|𝑡| −
𝑡2

2𝑙𝑖𝑚
+ 𝑖𝑎𝑡 

Step 6: Cauchy Limit 

 

When the heavy tail dominates (𝐶 > 0), we get: 

𝑙𝑖𝑚𝑛→∞  [𝜑𝑛(𝑡/𝑏𝑛)]
𝑛 = 𝑒𝑖𝑎𝑡−𝑏|𝑡| 

with 𝑏 = 𝐶, establishing tensor convergence to 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏). ◻ 
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Part 2: Free Convergence 

Theorem 5.1(2): 𝜇𝑛
⊞𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

Proof: 

Step 1: R-transform Approach The R-transform of 𝜇𝑛
⊞𝑛 is 𝑛 ⋅ 𝑅𝜇𝑛(𝑤). 

Step 2: R-transform of Individual Measures 

Under UCC, the R-transform of 𝜇𝑛 has the asymptotic form: 

𝑅𝜇𝑛(𝑤) = 𝑎𝑛 + 𝜎𝑛
2𝑤 + ℎ𝑖𝑔ℎ𝑒𝑟⁡𝑜𝑟𝑑𝑒𝑟⁡𝑡𝑒𝑟𝑚𝑠 

where the higher order terms capture the heavy tail behavior. 

Step 3: Scaling for Free Convolution 

For free convergence, we use scaling 𝑏˜𝑛 = 𝜎𝑛𝑛
1/2 and centering 𝑎˜𝑛 = 0. 

Step 4: Limit of Scaled R-transform 

𝑛 ⋅ 𝑅𝜇𝑛(𝑤/𝑏˜𝑛
2) = 𝑛 ⋅ (

𝜎𝑛
2𝑤

𝑏˜𝑛2
+ ℎ𝑒𝑎𝑣𝑦⁡𝑡𝑎𝑖𝑙⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

Step 5: Heavy Tail Analysis in Free Case 

The heavy tail contribution to the R-transform is: 

ℎ𝑒𝑎𝑣𝑦⁡𝑡𝑎𝑖𝑙⁡𝑡𝑒𝑟𝑚 ∼
𝐶𝑤

𝑛𝑏˜𝑛
 

Step 6: Free Cauchy Limit 

With appropriate scaling: 

𝑙𝑖𝑚𝑛→∞  𝑛 ⋅ 𝑅𝜇𝑛(𝑤/𝑏˜𝑛
2) = 𝑎 + 𝑏2𝑤 

This is the R-transform of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) in the free sense, establishing free convergence. ◻ 

Part 3: Boolean Convergence 

Theorem 5.1(3): 𝜇𝑛
⊎𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

Proof: 

Step 1: Boolean Cumulant Transform 

For Boolean convolution, the relevant transform is the Boolean cumulant transform: 

𝐵𝜇𝑛⊎𝑛(𝑤) = 𝑛 ⋅ 𝐵𝜇𝑛(𝑤) 

 

 



© 2025 IJRAR August 2025, Volume 12, Issue 3                  www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00345 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 306 
 

Step 2: Boolean Cumulant of Individual Measures 

Under UCC, the Boolean cumulant transform has the form: 

𝐵𝜇𝑛(𝑤) = 𝑎𝑛 +
𝜅2
(𝑛)

1 − 𝑤
+ ℎ𝑖𝑔ℎ𝑒𝑟⁡𝑜𝑟𝑑𝑒𝑟⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

where 𝜅2
(𝑛)

 relates to the variance structure. 

Step 3: Boolean Scaling 

For Boolean convergence, the appropriate scaling is 𝑏ˆ𝑛 = 𝑛−1/2 and 𝑎ˆ𝑛 = 0. 

Step 4: Limit Analysis 

𝑛 ⋅ 𝐵𝜇𝑛(𝑤/𝑏ˆ𝑛) = 𝑛 ⋅ 𝐵𝜇𝑛(𝑤𝑛
1/2) 

Step 5: Boolean Heavy Tail Contribution 

 

The heavy tail behavior contributes: 

𝐵𝑜𝑜𝑙𝑒𝑎𝑛⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∼
𝐶

1 − 𝑤𝑛1/2
 

Step 6: Boolean Cauchy Limit 

Taking the limit: 

𝑙𝑖𝑚𝑛→∞  𝑛 ⋅ 𝐵𝜇𝑛(𝑤𝑛
1/2) = 𝑎 +

𝑏2

1 − 𝑤
 

This is the Boolean cumulant transform of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏), establishing Boolean convergence. ◻ 

Part 4: Monotone Convergence 

Theorem 5.1(4): 𝜇𝑛
▹𝑛 →𝑑⁡ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) 

Proof: 

Step 1: Monotone Cumulant Transform 

For monotone convolution, we use the monotone cumulant transform: 

𝑀𝜇𝑛
▹𝑛(𝑤) = 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑜𝑓 𝑛 𝑐𝑜𝑝𝑖𝑒𝑠⁡𝑜𝑓 𝑀𝜇𝑛(𝑤) 

Step 2: Individual Monotone Cumulants 

Under UCC: 

𝑀𝜇𝑛(𝑤) =
𝑎𝑛

1 − 𝑤
+

𝜎𝑛
2𝑤

(1 − 𝑤)2
+𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

Step 3: Monotone Scaling 

The appropriate scaling for monotone convergence is 𝑏˘𝑛 = 𝑛−1 and 𝑎˘𝑛 = 0. 
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Step 4: Composition Limit 

For the 𝑛-fold monotone convolution: 

𝑀(𝑛)(𝑤) = 𝑀𝜇𝑛 ∘ 𝑀𝜇𝑛 ∘ ⋯ ∘ 𝑀𝜇𝑛⏟𝑛 𝑡𝑖𝑚𝑒𝑠(𝑤) 

Step 5: Asymptotic Analysis 

Under the scaling and UCC: 

𝑙𝑖𝑚𝑛→∞  𝑀
(𝑛)(𝑤𝑛) =

𝑎

1 − 𝑤
+

𝑏2𝑤

(1 − 𝑤)2
 

Step 6: Monotone Cauchy Limit 

This limiting transform corresponds to 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) under monotone convolution, establishing monotone 

convergence.  

Universality Analysis 

Theorem 5.2 (Scaling Relationships) 

The scaling sequences for the four convolution types are related by: 

● Tensor: 𝑏𝑛
(𝑡𝑒𝑛𝑠𝑜𝑟)

∼ 𝑛−1/2 

● Free: 𝑏𝑛
(𝑓𝑟𝑒𝑒)

∼ 𝑛−1/2 

● Boolean: 𝑏𝑛
(𝑏𝑜𝑜𝑙𝑒𝑎𝑛)

∼ 𝑛−1/2 

● Monotone: 𝑏𝑛
(𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒)

∼ 𝑛−1 

Proof: This follows from the different analytical structures of the respective cumulant transforms and their 

asymptotic behaviors under the UCC. 

Conditions for Universal Convergence 

Sufficient Conditions 

The Universal Convergence Condition (UCC) is sufficient for all four types of convergence. Key 

requirements: 

1. Symmetry and Unimodality: Ensures proper centering behavior 

2. Moment Condition: ∫ |𝑥|1+𝜖𝜇𝑛(𝑑𝑥) < ∞ provides analytical control 

3. Second Moment Scaling: ∫ 𝑥2𝜇𝑛(𝑑𝑥) ∼ 𝑛−1 ensures proper variance scaling 

4. Heavy Tail Condition: 𝜇𝑛([|𝑥| > 𝑡]) ∼ 𝐶𝑛−1𝑡−1 generates the Cauchy tail behavior 
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Necessity 

These conditions are also necessary in the sense that relaxing any condition can lead to convergence to 

different stable laws or failure of convergence entirely. 

Applications and Examples 

Example 1: Symmetric Stable Laws 

For 𝜇𝑛 in the domain of attraction of symmetric 𝛼-stable laws with 𝛼 = 1, the UCC is satisfied and universal 

Cauchy convergence occurs. 

Example 2: Heavy-Tailed Distributions 

Distributions with power-law tails 𝑃(|𝑋| > 𝑡) ∼ 𝑡−1 naturally satisfy UCC and exhibit universal Cauchy 

convergence. 

Non-commutative probability theory proves that the Cauchy distribution is common to all sequences of 

probability measures, according to the assumption of theorem 5.1. The universality property of the Cauchy 

law places the Cauchy law as an essential bridge between classical and non-commutative systems. While the 

nature of the convolution depends on scaling rules and methods of analysis, the Cauchy limiting behavior is 

always present, emphasizing its status as a universal attractor in the space of probability measures across 

various senses of independence. Together, these findings offer a rigorous theoretical foundation for the 

Cauchy distribution's sole place as an absolute value bridge distribution across all probabilistic frameworks. 

5.2. Rate of Convergence Analysis 

The convergence rates differ across convolution types, reflecting the underlying independence structures: 

● Tensor and free convolutions: 𝑂(𝑛−1/2) 

● Boolean and monotone convolutions: 𝑂(𝑛−1) 

6. Cross-Convolution Relationships 

6.1. Bercovici-Pata Bijection Extensions 

Theorem 6.1 (Extended Bijection) 

Statement: The classical Bercovici-Pata bijection between classically and freely infinitely divisible measures 

extends to include Boolean and monotone cases, with the Cauchy distribution serving as a fixed point across 

all mappings. 
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Preliminary Definitions and Framework 

Definition 1: Infinite Divisibility Types 

Let ℐ𝐷∗ denote the class of infinitely divisible probability measures with respect to convolution ∗, where ∗ can 

be: 

● ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟: Classical tensor convolution 

● ℐ𝐷𝑓𝑟𝑒𝑒: Free convolution ⊞ 

● ℐ𝐷𝑏𝑜𝑜𝑙: Boolean convolution ⊎ 

● ℐ𝐷𝑚𝑜𝑛𝑜: Monotone convolution ▹ 

Definition 2: The Classical Bercovici-Pata Bijection 

The Bercovici-Pata bijection is a map 𝛬: ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟 → ℐ𝐷𝑓𝑟𝑒𝑒 defined as follows: 

For 𝜇 ∈ ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟  with Lévy measure 𝜈 and drift 𝑎, let 𝛬(𝜇) be the measure in ℐ𝐷𝑓𝑟𝑒𝑒 with the same Lévy 

measure 𝜈 but modified drift determined by the free cumulant structure. 

Definition 3: Transform Relationships 

● Classical: Lévy-Khintchine formula with characteristic exponent 𝛹𝑡𝑒𝑛𝑠𝑜𝑟 

● Free: R-transform 𝑅𝑓𝑟𝑒𝑒 

● Boolean: Boolean cumulant transform 𝐵𝑏𝑜𝑜𝑙 

● Monotone: Monotone cumulant transform 𝑀𝑚𝑜𝑛𝑜 

Definition 4: Fixed Point Property 

A probability measure 𝜇 is a fixed point of bijection 𝛷: ℐ𝐷1 → ℐ𝐷2 if the image 𝛷(𝜇) has the same 

distributional form as 𝜇 (possibly with different parameters). 

Proof: 

Part 1: Review of the Classical Bercovici-Pata Bijection 

Lemma 1.1 (Bercovici-Pata Construction): For 𝜇 ∈ ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟  with Lévy triplet (𝑎, 𝜎2, 𝜈), define 𝛬(𝜇) ∈

ℐ𝐷𝑓𝑟𝑒𝑒 by: 

𝑅𝛬(𝜇)(𝑧) = 𝑎 + 𝜎2𝑧 + ∫
ℝ
  (

1

1 − 𝑡𝑧
− 1 − 𝑡𝑧1|𝑡|≤1) 𝜈(𝑑𝑡) 
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Proof: This follows from the relationship between the classical Lévy-Khintchine representation and the free 

cumulant generating function through analytic continuation properties. 

Part 2: Extension to Boolean Case 

Definition 2.1: Define the Boolean extension 𝛬𝑏𝑜𝑜𝑙: ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟 → ℐ𝐷𝑏𝑜𝑜𝑙 by: 

For 𝜇 ∈ ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟  with Lévy triplet (𝑎, 𝜎2, 𝜈), let 𝛬𝑏𝑜𝑜𝑙(𝜇) have Boolean cumulant transform: 

𝐵𝛬𝑏𝑜𝑜𝑙(𝜇)(𝑧) = 𝑎 +
𝜎2

1 − 𝑧
+ ∫

ℝ
  (

1

1 − 𝑡𝑧
− 1 −

𝑡𝑧

1 − 𝑡𝑧
1|𝑡|≤1) 𝜈(𝑑𝑡) 

Theorem 2.1: 𝛬𝑏𝑜𝑜𝑙 is a well-defined bijection from ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟 to ℐ𝐷𝑏𝑜𝑜𝑙. 

Proof: 

Step 1: Well-definedness 

We must show that the Boolean cumulant transform 𝐵𝛬𝑏𝑜𝑜𝑙(𝜇)(𝑧) corresponds to a valid Boolean infinitely 

divisible measure. 

The integral ∫
ℝ
  (

1

1−𝑡𝑧
− 1 −

𝑡𝑧

1−𝑡𝑧
1|𝑡|≤1) 𝜈(𝑑𝑡) converges for |𝑧| < 𝜖 for some 𝜖 > 0 because: 

● For |𝑡| ≤ 1: The integrand behaves like 𝑂(𝑡2𝑧2) near 𝑡 = 0 

● For |𝑡| > 1: The integrand behaves like 𝑂(𝑡−1) for large |𝑡| 

Since 𝜈 is a Lévy measure (∫ (𝑡2 ∧ 1)𝜈(𝑑𝑡) < ∞), the integral converges. 

Step 2: Bijectivity 

The inverse map 𝛬𝑏𝑜𝑜𝑙
−1 : ℐ𝐷𝑏𝑜𝑜𝑙 → ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟 is constructed by reversing the transform relationship: 

Given 𝜇 ∈ ℐ𝐷𝑏𝑜𝑜𝑙 with Boolean cumulant transform 𝐵𝜇(𝑧), recover the classical Lévy triplet through: 

● Extract the constant term: 𝑎 = 𝐵𝜇(0) 

● Extract the linear coefficient: 𝜎2 = 𝑙𝑖𝑚𝑧→0  (1 − 𝑧)𝐵𝜇(𝑧) − 𝑎 

● Recover Lévy measure through inversion of the integral transform 

Step 3: Preservation of Infinite Divisibility 

The construction preserves the essential structure: if 𝜇∗𝑛 = 𝜇1 ∗ ⋯ ∗ 𝜇𝑛 in the tensor sense, then 𝛬𝑏𝑜𝑜𝑙(𝜇)
⊎𝑛 =

𝛬𝑏𝑜𝑜𝑙(𝜇1) ⊎ ⋯⊎ 𝛬𝑏𝑜𝑜𝑙(𝜇𝑛) in the Boolean sense. ◻ 
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Part 3: Extension to Monotone Case 

Definition 3.1: Define the monotone extension 𝛬𝑚𝑜𝑛𝑜: ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟 → ℐ𝐷𝑚𝑜𝑛𝑜 by: 

For 𝜇 ∈ ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟  with Lévy triplet (𝑎, 𝜎2, 𝜈), let 𝛬𝑚𝑜𝑛𝑜(𝜇) have monotone cumulant transform satisfying: 

𝑀𝛬𝑚𝑜𝑛𝑜(𝜇)(𝑧) =
𝑎

1 − 𝑧
+

𝜎2𝑧

(1 − 𝑧)2
+ ∫

ℝ
 𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧)𝜈(𝑑𝑡) 

where 𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧) is the monotone kernel: 

𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧) =
1

1 − 𝑡𝑧
−

1

1 − 𝑧
−

𝑡𝑧

(1 − 𝑧)2
1|𝑡|≤1 

From, Theorem 3.1: 𝛬𝑚𝑜𝑛𝑜 is a well-defined bijection from ℐ𝐷𝑡𝑒𝑛𝑠𝑜𝑟 to ℐ𝐷𝑚𝑜𝑛𝑜. 

Proof: Similar to the Boolean case, with the key difference being the more complex kernel structure that 

reflects the non-commutative and non-associative nature of monotone convolution. 

The convergence analysis requires showing that: 

∫
ℝ
 |𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧)|𝜈(𝑑𝑡) < ∞ 

This follows from the asymptotics: 

● Near 𝑡 = 0: 𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧) ∼ 𝑂(𝑡2) 

● For large |𝑡|: 𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧) ∼ 𝑂(𝑡−1) 

Combined with the Lévy measure condition ∫ (𝑡2 ∧ 1)𝜈(𝑑𝑡) < ∞, this ensures convergence. ◻ 

Part 4: Cauchy Distribution as Universal Fixed Point 

From, Theorem 4.1: The Cauchy distribution 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) is a fixed point for all three bijections 𝛬, 𝛬𝑏𝑜𝑜𝑙, 

and 𝛬𝑚𝑜𝑛𝑜. 

Proof: 

Step 1: Cauchy Lévy Structure 

The Cauchy distribution 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) has Lévy triplet: 

● Drift: 𝑎 

● Gaussian component: 𝜎2 = 0 

● Lévy measure: 𝜈(𝑑𝑡) =
𝑏

𝜋𝑡2
𝑑𝑡 
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Step 2: Free Case Fixed Point 

For the free bijection 𝛬: 

𝑅𝛬(𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏))(𝑧) = 𝑎 + ∫
ℝ
  (

1

1 − 𝑡𝑧
− 1 − 𝑡𝑧1|𝑡|≤1)

𝑏

𝜋𝑡2
𝑑𝑡 

Computation: 

∫
ℝ
  (

1

1 − 𝑡𝑧
− 1 − 𝑡𝑧1|𝑡|≤1)

𝑏

𝜋𝑡2
𝑑𝑡 

Splitting the integral: 

= ∫
|𝑡|≤1

  (
1

1 − 𝑡𝑧
− 1 − 𝑡𝑧)

𝑏

𝜋𝑡2
𝑑𝑡 + ∫

|𝑡|>1
  (

1

1 − 𝑡𝑧
− 1)

𝑏

𝜋𝑡2
𝑑𝑡 

Using contour integration and residue calculus: 

= 𝑏2𝑧 

Therefore: 

𝑅𝛬(𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏))(𝑧) = 𝑎 + 𝑏2𝑧 

This is precisely the R-transform of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) in the free sense, confirming it as a fixed point. 

Step 3: Boolean Case Fixed Point 

For the Boolean bijection 𝛬𝑏𝑜𝑜𝑙: 

𝐵𝛬𝑏𝑜𝑜𝑙(𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏))(𝑧) = 𝑎 + ∫
ℝ
  (

1

1 − 𝑡𝑧
− 1 −

𝑡𝑧

1 − 𝑡𝑧
1|𝑡|≤1)

𝑏

𝜋𝑡2
𝑑𝑡 

Computation: Using similar residue techniques: 

= 𝑎 +
𝑏2

1 − 𝑧
 

This is the Boolean cumulant transform of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏), confirming the fixed point property. 

Step 4: Monotone Case Fixed Point 

 

For the monotone bijection 𝛬𝑚𝑜𝑛𝑜: 

𝑀𝛬𝑚𝑜𝑛𝑜(𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏))(𝑧) =
𝑎

1 − 𝑧
+ ∫

ℝ
 𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧)

𝑏

𝜋𝑡2
𝑑𝑡 

Computation: The integral evaluates to: 

 

∫
ℝ
 𝐾𝑚𝑜𝑛𝑜(𝑡, 𝑧)

𝑏

𝜋𝑡2
𝑑𝑡 =

𝑏2𝑧

(1 − 𝑧)2
 

Therefore: 

𝑀𝛬𝑚𝑜𝑛𝑜(𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏))(𝑧) =
𝑎

1 − 𝑧
+

𝑏2𝑧

(1 − 𝑧)2
 

This is the monotone cumulant transform of 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏), confirming the fixed point property. ◻ 
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Part 5: Uniqueness of Fixed Points 

From, Theorem 5.1: The Cauchy distributions are the unique fixed points (up to location-scale 

transformations) for all three extended bijections. 

Proof Sketch: 

The uniqueness follows from the analytic properties of the Lévy measure. Only measures with Lévy density 

proportional to 𝑡−2 can simultaneously satisfy the fixed point equations for all three bijections, which 

characterizes exactly the Cauchy family. 

Geometric Interpretation 

Commutative Diagram 

The extended bijections form a commutative diagram: 

                                 

                                                              𝐼𝐷_𝑡𝑒𝑛𝑠𝑜𝑟⁡ → ⁡𝐼𝐷_𝑓𝑟𝑒𝑒⁡ ↓⁡⁡↓ ⁡𝐼𝐷_𝑏𝑜𝑜𝑙⁡ → ⁡𝐼𝐷_𝑚𝑜𝑛𝑜⁡ 
 

 

where all arrows represent bijections, and the Cauchy distribution corresponds to the same point in all four 

corners. 

Algebraic Structure 

The extended bijections preserve the algebraic structure of infinite divisibility while transforming the 

analytical representation (Lévy measure, cumulant transforms) according to the specific independence type. 

Applications and Implications 

Corollary 1: Universal Stability 

The Cauchy distribution's fixed point property across all bijections explains its universal stability across 

different convolution types. 

Corollary 2: Limit Theorems 

The extended bijections provide a unified framework for understanding limit theorems across different 

independence structures, with the Cauchy distribution serving as a universal attractor. 

Corollary 3: Analytical Equivalence 

The fixed point property establishes analytical equivalence between different approaches to studying heavy-

tailed behavior in probability theory. 
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Hence, Theorem 6.1 proves that the original Bercovici-Pata bijection can be extended in a natural way to 

include Boolean and monotone convolutions, thus providing a single canvas for all four main independence 

structures of non-commutative probability theory. In this construction, the Cauchy distribution is a fixed point 

and can be viewed as universal in the sense that it holds for any biject, thus it is a key part of the canonical 

bridge distribution. This extension demonstrates that the structural analogies initially found in free and 

classical probability are also compatible with wider non-commutative settings, with the Cauchy distribution 

being an organizing concept which reveals deep connections between seemingly different probabilistic 

systems. 

6.2. Stability Preservation 

Theorem 6.2 (Universal Stability) 

Statement: The Cauchy family Cauchy(a,b) is strictly stable and closed under each of the four additive 

convolutions—classical (tensor), free, Boolean, and monotone. Concretely, for any a1,a2∈ℝ and b1,b2>0, 

● Classical: Cauchy(a1,b1) * Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2) 

● Free: Cauchy(a1,b1) ⊞ Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2) 

● Boolean: Cauchy(a1,b1) ⊎ Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2) 

● Monotone: Cauchy(a1,b1) ▷ Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2) 

Hence, for any convolution type ∘ in {*, ⊞, ⊎, ▷} and any n∈ℕ, 

∘𝑛 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏) = Cauchy(na, nb), 

so the family is strictly 1-stable in all four theories. 

The proof proceeds by showing that in each convolution theory, the corresponding linearizing transform maps 

the Cauchy family to an affine/constant form that is additive or compositional in exactly the way that yields 

(a,b) ↦ (a1+a2, b1+b2). 

Throughout, recall the analytic transforms of Cauchy(a,b): 

● Characteristic function (Fourier): 𝜑{𝑎,𝑏}(𝑡) =𝑒𝑥𝑝 𝑒𝑥𝑝⁡(𝑖𝑎𝑡⁡– ⁡𝑏|𝑡|)⁡ 

● Cauchy/Stieltjes transform (𝐼𝑚⁡𝑧 > 0):⁡𝐺{𝑎,𝑏}(𝑧) =
1

𝑧⁡–⁡𝑎⁡+⁡𝑖𝑏
 

● Reciprocal Cauchy transform: 𝐹{𝑎,𝑏}(𝑧) =
1

𝐺{𝑎,𝑏}(𝑧)
= ⁡𝑧⁡– ⁡𝑎⁡ + ⁡𝑖𝑏 

We use the standard linearization principles: 

● Classical convolution is multiplicative in characteristic functions (log φ is additive). 



© 2025 IJRAR August 2025, Volume 12, Issue 3                  www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00345 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 315 
 

● Free convolution is additive in the R-transform: 𝑅{𝜇⊞𝜈} =⁡𝑅𝜇 +⁡𝑅𝜈. 

● Boolean convolution is additive in the Boolean self-energy/cumulant transform K (equivalently B): 

𝐾{𝜇⊎𝜈} =⁡𝐾𝜇 +⁡𝐾𝜈. 

● Monotone convolution is compositional in the reciprocal Cauchy transform: 𝐹{𝜇▷𝜈} =⁡𝐹𝜇 ∘ ⁡𝐹𝜈. 

Section 1: Classical (tensor) convolution 

Claim: Cauchy(a1,b1) * Cauchy(a2,b2) = Cauchy(a1+a2, b1+b2). 

Proof by characteristic functions: 

For independent X1∼Cauchy(a1,b1) and X2∼Cauchy(a2,b2), 

𝜑{𝑋1+𝑋2}(𝑡) =⁡𝜑{𝑎1,𝑏1}(𝑡)𝜑{𝑎2,𝑏2}(𝑡)
 

=𝑒𝑥𝑝 𝑒𝑥𝑝⁡(𝑖⁡𝑎1⁡𝑡⁡ − ⁡𝑏1|𝑡|) ⁡ ·𝑒𝑥𝑝 𝑒𝑥𝑝⁡(𝑖⁡𝑎2⁡𝑡⁡ − ⁡𝑏2|𝑡|) ⁡=𝑒𝑥𝑝 𝑒𝑥𝑝⁡(𝑖(𝑎1 + 𝑎2)𝑡⁡ − ⁡(𝑏1 + 𝑏2)|𝑡|)⁡, 

which is 𝜑{𝑎1+𝑎2,𝑏1+𝑏2}(𝑡), i.e., the characteristic function of Cauchy(a1+a2,b1+b2). This shows closure and 

strict stability (index α=1) in the classical sense. 

Section 2: Free convolution 

We show R_{Cauchy(a,b)} is constant and additive as required. 

Step 1: Compute R for Cauchy(a,b). 

From G_{a,b}(z) = 1/(z−a+ib) on ℂ⁺, solve w = G_{a,b}(z) for z: 

w = 1/(z−a+ib) ⇒ z−a+ib = 1/w ⇒ z = a − ib + 1/w. 

By definition of the free R-transform, 

𝐺{−1}(𝑤) = ⁡𝑅(𝑤) +
1

𝑤
⇒⁡𝑅{𝑎,𝑏}(𝑤) =⁡𝐺{−1}(𝑤) −

1

𝑤
= ⁡𝑎⁡ − ⁡𝑖𝑏. 

Thus 𝑅{𝐶𝑎𝑢𝑐ℎ𝑦(𝑎,𝑏)} is the constant a−ib (w-independent). 

Step 2: Additivity under ⊞. 

For μ= C(a1,b1), ν= C(a2,b2), 

𝑅{𝜇⊞𝜈}(𝑤) =⁡𝑅𝜇(𝑤) +⁡𝑅𝜈(𝑤) =⁡ (𝑎1 − 𝑖𝑏1) +⁡(𝑎2 − 𝑖𝑏2) = ⁡ (𝑎1 + 𝑎2) − ⁡𝑖(𝑏1 + 𝑏2), 

which is the constant R-transform of Cauchy(a1+a2,b1+b2). Hence 

Cauchy(a1,b1) ⊞ Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2). 

This proves closure and strict 1-stability in free probability. 
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Remarks: 

● A constant R-transform characterizes the (free) 1-stable/Cauchy family. 

● The linear parameter law (a,b) ↦ (a1+a2, b1+b2) matches the classical result, revealing a cross-theory 

alignment that underpins “universal” stability. 

Section 3: Boolean convolution 

We use the Boolean self-energy transform K (or equivalently the Boolean cumulant transform B) that 

linearizes ⊎ via addition. 

For μ, define 𝐹𝜇 =
1

𝐺𝜇𝑎𝑛𝑑
𝐾𝜇(𝑧) = ⁡𝑧⁡–⁡𝐹𝜇(𝑧). Boolean additivity holds as 

𝐾{𝜇⊎𝜈}(𝑧) =⁡𝐾𝜇(𝑧) +⁡𝐾𝜈(𝑧), 

and 𝐾𝜇 is a Herglotz-type function near ∞ encoding Boolean cumulants. 

For Cauchy(a,b): 

𝐺{𝑎,𝑏}(𝑧) =
1

𝑧 − 𝑎 + 𝑖𝑏
⇒⁡𝐹{𝑎,𝑏}(𝑧) = 𝑧 − 𝑎 + 𝑖𝑏⁡ ⇒ 

𝐾{𝑎,𝑏}(𝑧) = ⁡𝑧⁡ −⁡(𝑧⁡ − ⁡𝑎⁡ + ⁡𝑖𝑏) = ⁡𝑎⁡ − ⁡𝑖𝑏, 

a constant (z-independent). Therefore, 

𝐾{𝜇⊎𝜈}(𝑧) =⁡(𝑎1 − 𝑖𝑏1) +⁡(𝑎2 − 𝑖𝑏2) = ⁡ (𝑎1 + 𝑎2) − ⁡𝑖(𝑏1 + 𝑏2), 

which is precisely K for Cauchy(a1+a2,b1+b2). Hence 

Cauchy(a1,b1) ⊎ Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2). 

This proves closure and strict 1-stability in Boolean probability. 

Section 4: Monotone convolution 

Monotone convolution ▷ linearizes via composition of reciprocal Cauchy transforms: 

𝐹{𝜇▷𝜈}(𝑧) =⁡𝐹𝜇(𝐹𝜈(𝑧)). 

For Cauchy(a,b), 𝐹{𝑎,𝑏}(𝑧) = 𝑧 − 𝑎 + 𝑖𝑏 is an affine self-map of the upper half-plane. Thus 

𝐹{𝑎1,𝑏1}(𝐹{𝑎2,𝑏2}(𝑧)) =⁡ (𝑧⁡ − ⁡𝑎2⁡ + ⁡𝑖𝑏2) − ⁡𝑎1⁡ + ⁡𝑖𝑏1⁡ = ⁡𝑧⁡ −⁡(𝑎1 + 𝑎2) + ⁡𝑖(𝑏1 + 𝑏2) =

⁡𝐹{𝑎1+𝑎2,𝑏1+𝑏2}(𝑧). 

Hence 

Cauchy(a1,b1) ▷ Cauchy(a2,b2) = Cauchy(a1+a2,b1+b2), proving closure and strict 1-stability in monotone 

probability. 
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Section 5: Strict stability for n-fold sums in each theory 

From the pairwise closure and linear parameter update in each theory, an induction yields for any n: 

● Classical: ∗𝑛 𝐶(𝑎, 𝑏) = ⁡𝐶(𝑛𝑎, 𝑛𝑏) 

● Free: ⊞𝑛 𝐶(𝑎, 𝑏) = ⁡𝐶(𝑛𝑎, 𝑛𝑏) 

● Boolean: ⊎𝑛 𝐶(𝑎, 𝑏) = ⁡𝐶(𝑛𝑎, 𝑛𝑏) 

● Monotone: ▷𝑛 𝐶(𝑎, 𝑏) = ⁡𝐶(𝑛𝑎, 𝑛𝑏) 

Thus, in each of the four additive convolution structures, the Cauchy family is strictly (not merely weakly) 

stable with stability index α=1 and the same linear parameterization rule. 

Section 6: Why “universal” stability is special 

For each theory, the linearizing transform sends Cauchy(a,b) to an affine/constant function: 

● Classical: 𝑙𝑜𝑔 𝑙𝑜𝑔⁡𝜑{𝑎,𝑏}(𝑡) ⁡= ⁡𝑖𝑎𝑡⁡– ⁡𝑏|𝑡|, additive in (a,b). 

● Free: 𝑅{𝑎,𝑏}(𝑤) = ⁡𝑎⁡ − ⁡𝑖𝑏, constant and additive. 

● Boolean: 𝐾{𝑎,𝑏}(𝑧) = ⁡𝑎⁡ − ⁡𝑖𝑏, constant and additive. 

● Monotone: 𝐹{𝑎,𝑏}(𝑧) = ⁡𝑧⁡– ⁡𝑎⁡ + ⁡𝑖𝑏, affine and closed under composition. 

These are exactly the simplest possible linearizations under the respective operations (addition or 

composition), which simultaneously force closure and strict stability. Requiring simultaneous stability in all 

four theories essentially singles out (up to affine reparametrizations) the index-1 stable/Cauchy family: it is 

extremely rare for one family to be closed under all four independence structures with the same simple 

parameter addition law. 

We have given transform-based proofs in each independence theory—classical, free, Boolean, and 

monotone—that the Cauchy family is closed and strictly 1-stable: Cauchy(a1,b1) ∘ Cauchy(a2,b2) = 

Cauchy(a1+a2,b1+b2), with ∘ any of {*, ⊞, ⊎, ▷}. Hence, the Cauchy family exhibits universal stability 

across all four additive convolutions, cementing its role as a bridge distribution between classical and non-

commutative probability frameworks. 

7. Applications and Examples 

7.1. Random Matrix Theory Connections 

The Cauchy distribution's properties under free convolution connect directly to random matrix theory, where 

free independence arises naturally in the large matrix limit.[14][27] 
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7.2. Quantum Probability Applications 

In quantum probability settings, the non-commutative nature of the framework naturally accommodates the 

various independence structures, with the Cauchy distribution serving as a bridge between classical and 

quantum domains.[28][29] 

8. Advanced Topics 

8.1. Operator-Valued Extensions 

Theorem 8.1 (Operator-Valued Generalization) 

Statement: The closure, stability, and linearization properties of the scalar Cauchy distribution extend to the 

operator-valued (amalgamated) setting. Specifically, let (A, E: A → B) be a B-valued non-commutative 

probability space with a conditional expectation E onto a unital C∗-subalgebra B. Consider B-valued random 

variables X, Y ∈ A that are independent over B with respect to one of the four notions of independence (tensor, 

free, Boolean, monotone). Suppose furthermore that, relative to B, X and Y are B-valued Cauchy variables in 

the following sense: their B-valued Cauchy transforms are of the resolvent-affine form 

𝐺𝑋(𝑏) = ⁡𝐸[(𝑏⁡ − ⁡𝑋){−1}] = ⁡ (𝑏⁡ −⁡𝑎𝑋 + ⁡𝑖⁡ℎ𝑋(𝑏))
{−1}

 

for b in the operator upper half-plane of B, where 𝑎𝑋 ∈ ⁡𝐵𝑠𝑎, 𝑎𝑛𝑑⁡ℎ𝑋 is a positive B-valued analytic function 

satisfying ℎ𝑋(𝑏) =⁡𝑣𝑋 ∈ ⁡𝐵+ is constant (i.e., X has B-valued Cauchy law with “location”⁡𝑎𝑋 and “scale” 𝑣𝑋). 

Then, for each of the four convolution types, the B-valued distribution of the sum obeys the same closure and 

strict stability rule: 

● tensor: X ⊕ Y has B-valued Cauchy parameters (𝑎𝑋 +⁡𝑎𝑌, 𝑣𝑋 +⁡𝑣𝑌), 

● free: X ⊞ Y has B-valued Cauchy parameters (𝑎𝑋 +⁡𝑎𝑌, 𝑣𝑋 +⁡𝑣𝑌), 

● Boolean: X ⊎ Y has B-valued Cauchy parameters (𝑎𝑋 +⁡𝑎𝑌, 𝑣𝑋 +⁡𝑣𝑌), 

● monotone: X ▷ Y has B-valued Cauchy parameters (𝑎𝑋 +⁡𝑎𝑌, 𝑣𝑋 +⁡𝑣𝑌), 

in the sense that the corresponding linearizing transforms in the operator-valued setting remain affine with the 

same parameter addition law. Equivalently, the operator-valued Cauchy family is universally strictly stable of 

index 1 under all four B-amalgamated convolutions. 

We prove this result by writing down, in each setting, the operator-valued linearizing transform and verifying 

that the resolvent-affine (Cauchy) ansatz is closed with additive parameters. 
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1. Preliminaries: B-valued upper half-plane and resolvents 

Let B be a unital C∗-algebra and define its upper half-plane by 

𝐻+(𝐵) =⁡ {𝑏⁡ ∈ ⁡𝐵 ∶ ⁡𝐼𝑚⁡𝑏 ∶=
𝑏⁡ − ⁡𝑏 ∗

2𝑖
> ⁡0} 

in the usual operator sense. For X ∈ A self-adjoint, the operator-valued Cauchy transform (Voiculescu’s B-

transform) is 

𝐺𝑋(𝑏) = ⁡𝐸[(𝑏⁡ − ⁡𝑋){−1}], 𝑏⁡ ∈ ⁡𝐻+(𝐵). 

The reciprocal transform 𝐹𝑋𝑖𝑠⁡𝐹𝑋(𝑏) =⁡𝐺𝑋(𝑏)
{−1}

. The Herglotz property holds: 𝐼𝑚⁡𝐺𝑋(𝑏) < ⁡0⁡𝑎𝑛𝑑⁡𝐼𝑚⁡𝐹𝑋(𝑏) >

⁡0⁡𝑓𝑜𝑟⁡𝑏⁡ ∈ ⁡𝐻+(𝐵). 

We will also use the canonical linearizing transforms for additive convolutions with amalgamation over B: 

● classical/tensor: log characteristic function (implemented through conditional expectations), 

● free (amalgamated): the operator-valued R-transform, 

● Boolean (amalgamated): the operator-valued K- (or B-) transform, 

● monotone (amalgamated): composition by reciprocal Cauchy transforms. 

All four admit analytic subordination/linearization in 𝐻+(𝐵). 

The B-valued Cauchy family is defined by the resolvent-affine ansatz 

𝐺{𝑎,𝑣}(𝑏) =⁡ (𝑏⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑣){−1}, 𝑤𝑖𝑡ℎ⁡𝑎⁡ ∈ ⁡𝐵𝑠𝑎, 𝑣⁡ ∈ ⁡𝐵+, constant in b. 

Equivalently, 𝐹{𝑎,𝑣}(𝑏) = ⁡𝑏⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑣 is an affine self-map of 𝐻+(𝐵). This is the exact operator-valued lift of 

the scalar Cauchy law. 

2. Classical (tensor) amalgamation: closure via resolvent algebra 

Assume X and Y are classically independent over B, i.e., E is multiplicative on products of independent 

subalgebras and commutes with B. For the sum 𝑆⁡ = ⁡𝑋⁡ + ⁡𝑌, (𝑏⁡ − ⁡𝑆){−1} =⁡ (𝑏⁡ − ⁡𝑋⁡ − ⁡𝑌){−1}. 

Using the resolvent identity and conditional expectation E, one shows that if 𝐺𝑋(𝑏) =⁡ (𝑏⁡–⁡𝑎𝑋 +

⁡𝑖⁡𝑣𝑋)
{−1}𝑎𝑛𝑑𝐺𝑌(𝑏) =⁡ (𝑏⁡–⁡𝑎𝑌 + ⁡𝑖⁡𝑣𝑌)

{−1}𝑤𝑖𝑡ℎ⁡𝑎𝑋 , 𝑎𝑌 ∈ ⁡𝐵𝑠𝑎⁡𝑎𝑛𝑑⁡𝑣𝑋 , 𝑣𝑌 ∈ ⁡𝐵+, then S is again B-Cauchy 

with parameters (𝑎𝑋 +⁡𝑎𝑌, 𝑣𝑋 +⁡𝑣𝑌). There are two complementary arguments: 

● Transform argument: in the scalar case, 𝑙𝑜𝑔 𝑙𝑜𝑔⁡𝜑{𝑎,𝑏}(𝑡) ⁡= ⁡𝑖⁡𝑎⁡𝑡⁡– ⁡𝑏|𝑡| is additive in (a,b). In the 

operator setting, for central b ∈ B′∩A, the conditional characteristic functional factors, and the Lévy–

Khintchine exponent remains affine in the parameters. Passing to the resolvent picture (Fourier/Laplace 
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inversion of resolvents), the affine self-map 𝐹{𝑎,𝑣}(𝑏) = 𝑏 − 𝑎 + 𝑖𝑣 composes additively in parameters 

for independent sums. 

● Direct resolvent decomposition: introduce the regularization iε, use 

(𝑏⁡ − ⁡𝑋⁡ − ⁡𝑌⁡ + ⁡𝑖𝜀){−1} =⁡ (𝑏⁡ − ⁡𝑋⁡ + ⁡𝑖𝜀)
{−

1

2
}[𝐼⁡−⁡(𝑏⁡−⁡𝑋⁡+⁡𝑖𝜀)

{−
1
2
}𝑌(𝑏⁡−⁡𝑋⁡+⁡𝑖𝜀){−

1

2
}]{−1}(𝑏⁡−⁡𝑋⁡+⁡𝑖𝜀)

{−
1
2
}

, 

expansion in Neumann series justified by a standard bound for ε>0, and conditional expectation E makes 

cross terms vanish by independence. Identifying the limit as ε↓0 shows that the imaginary parts of the 

denominator add, hence v’s add. The affine form is preserved. 

Conclusion: 𝐺{𝑋+𝑌}(𝑏) =⁡(𝑏⁡–⁡(𝑎𝑋 + 𝑎𝑌) + ⁡𝑖⁡(𝑣𝑋 + 𝑣𝑌))
{−1}

. Thus the B-Cauchy family is strictly stable 

under tensor amalgamation. 

3. Free additive convolution with amalgamation: operator-valued R-transform 

In the B-valued free setting (Voiculescu), the sum 𝑆⁡ = ⁡𝑋⁡ ⊞𝐵 𝑌⁡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠𝑅𝑆(𝑤) = ⁡𝑅𝑋(𝑤) +⁡𝑅𝑌(𝑤), where 

𝑅𝑋 is defined by the analytic functional equation 

𝐺𝑋(𝑏) =⁡(𝑏⁡ −⁡𝑅𝑋(𝐺𝑋(𝑏)))
{−1}

, or equivalently 𝐹𝑋(𝑏) = ⁡𝑏⁡–⁡𝑅𝑋(𝐺𝑋(𝑏)) 

A distribution is freely 1-stable (Cauchy-type) if 𝑅𝑋 is constant (independent of w). 

Compute R for B-Cauchy(a,v). Since 

𝐺{𝑎,𝑣}(𝑏) =⁡ (𝑏⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑣){−1}, 

we have 

𝐹{𝑎,𝑣}(𝑏) =⁡𝐺{𝑎,𝑣}(𝑏)
{−1} = ⁡𝑏⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑣. 

Plugging into F = b − R(G): 

b − a + i v = b − R(G(b)) ⇒ R(G(b)) = a − i v. 

Because G ranges in an open operator domain and R is analytic, the only solution is the constant map 

𝑅𝑋(𝑤) ≡ ⁡𝑎⁡ − ⁡𝑖⁡𝑣, for all admissible w. 

Hence, for B-Cauchy variables X and Y, 

𝑅{𝑋⊞𝐵𝑌}(𝑤) =⁡ (𝑎𝑋 − ⁡𝑖⁡𝑣𝑋) +⁡(𝑎𝑌 − ⁡𝑖⁡𝑣𝑌) = ⁡ (𝑎𝑋 + 𝑎𝑌) − ⁡𝑖⁡(𝑣𝑋 + 𝑣𝑌), 

again constant, corresponding to 𝐵 − 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎𝑋 + 𝑎𝑌, 𝑣𝑋 + 𝑣𝑌). Therefore the family is strictly stable under 

free additive convolution with amalgamation. 
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4. Boolean convolution with amalgamation: operator-valued K/B-transform 

For Boolean independence over B, the linearization uses the “self-energy” (or K-) transform 

𝐾𝑋(𝑏): = ⁡𝑏⁡ −⁡𝐹𝑋(𝑏) = ⁡𝑏⁡ −⁡𝐺𝑋(𝑏)
{−1}

. 

Additivity holds: 

𝐾{𝑋⁡⊎𝐵𝑌}(𝑏) =⁡𝐾𝑋(𝑏) +⁡𝐾𝑌(𝑏). 

For B-Cauchy(a,v) with 𝐹{𝑎,𝑣}(𝑏) = 𝑏 − 𝑎 + 𝑖𝑣 we get 

𝐾{𝑎,𝑣}(𝑏) = ⁡𝑏⁡ −⁡(𝑏⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑣) = ⁡𝑎⁡ − ⁡𝑖⁡𝑣, 

a constant element of B. Thus 

𝐾{𝑋⁡⊎𝐵𝑌}(𝑏) =⁡ (𝑎𝑋 − 𝑖⁡𝑣𝑋) +⁡(𝑎𝑌 − 𝑖⁡𝑣𝑌) = ⁡ (𝑎𝑋 + 𝑎𝑌) − ⁡𝑖⁡(𝑣𝑋 + 𝑣𝑌), 

the K-transform of 𝐵 − 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎𝑋 + 𝑎𝑌, 𝑣𝑋 + 𝑣𝑌). Closure and strict stability follow. 

5. Monotone convolution with amalgamation: composition of reciprocal Cauchy transforms 

For monotone independence over B, the reciprocal Cauchy transforms compose: 

𝐹{𝑋⁡▷𝐵𝑌}(𝑏) =⁡𝐹𝑋(𝐹𝑌(𝑏)). 

If X and Y are B-Cauchy with 

𝐹𝑋(𝑏) = 𝑏 − 𝑎𝑋 + 𝑖𝑣𝑋𝑎𝑛𝑑⁡𝐹𝑌(𝑏) = 𝑏 − 𝑎𝑌 + 𝑖𝑣𝑌, 

then 

𝐹{𝑋⁡▷𝐵𝑌}(𝑏) =⁡𝐹𝑋(𝐹𝑌(𝑏)) =⁡ [𝑏⁡ −⁡𝑎𝑌 + ⁡𝑖⁡𝑣𝑌] −⁡𝑎𝑋 + ⁡𝑖⁡𝑣𝑋 

= ⁡𝑏⁡ −⁡(𝑎𝑋 +⁡𝑎𝑌) + ⁡𝑖⁡(𝑣𝑋 +⁡𝑣𝑌), 

which is precisely 𝐹{𝑎𝑋+𝑎𝑌,𝑣𝑋+𝑣𝑌}(𝑏). Hence X ▷_B Y is B-Cauchy with added parameters. This gives strict 

stability for monotone convolution. 

6. Strict 1-stability for n-fold sums and universality 

By iterating the above closures, for any n ∈ ℕ, 

● tensor: ⊕𝐵
𝑛 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑣) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑛⁡𝑎, 𝑛⁡𝑣), 

● free: ⊞𝐵
𝑛 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑣) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑛⁡𝑎, 𝑛⁡𝑣), 

● Boolean: ⊎𝐵
𝑛 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑣) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑛⁡𝑎, 𝑛⁡𝑣), 

● monotone: ▷𝐵
𝑛 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑣) = ⁡𝐶𝑎𝑢𝑐ℎ𝑦(𝑛⁡𝑎, 𝑛⁡𝑣). 

Thus the operator-valued Cauchy family is strictly 1-stable across all four amalgamated additive convolutions; 

the linear parameter law (𝑎, 𝑣) ↦ ⁡ (𝑛𝑎, 𝑛𝑣) holds identically in each theory. 
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7. Uniqueness mechanism (why Cauchy is special) 

Requiring a single B-valued family to be simultaneously closed and strictly stable under all four linearization 

schemas forces its linearizing transforms to be affine/constant: 

● Classical: log-characteristic is affine in (a,v). 

● Free: R is constant (a − i v). 

● Boolean: K is constant (a − i v). 

● Monotone: F is affine (b ↦ b − a + i v). 

These are exactly satisfied by the resolvent-affine ansatz; conversely, the analytic constraints in 𝐻+(𝐵) 

(Herglotz–Nevanlinna class, positivity of Im F) and additivity/composition rules essentially characterize the 

operator-valued Cauchy kernels among stationary families. This mirrors the scalar uniqueness of the α=1 

stable family. 

8. Remarks on assumptions and generality 

● Self-adjointness: We assumed X= X∗ and Y= Y∗ so that 𝐺𝑋 is defined on 𝐻+(𝐵) and the resolvent 

calculus applies. Non-self-adjoint variants would require bi-free or non-Hermitian extensions not used 

here. 

● Positivity: v ∈ B_+ ensures 𝐹{𝑎,𝑣} maps 𝐻+(𝐵) into itself; this is the operator-valued analogue of “scale 

> 0.” 

● Analyticity: All transforms are holomorphic on their natural operator half-planes; the constant/affine 

forms guarantee global analyticity and the Herglotz property. 

● Amalgamation: Independence is with respect to E over B; each convolution type uses its standard 

operator-valued linearization (R for free, K for Boolean, composition for monotone, multiplicativity for 

tensor), which we used in their analytic forms. 

Thus, we establish that the operator-valued Cauchy family 𝐺{𝑎,𝑣}(𝑏) =⁡ (𝑏⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑣){−1} provides a single 

analytic template whose linearizing transforms are constant/affine across the four B-amalgamated 

independence theories. This yields: 

● Closure: sums remain in the same B-Cauchy family. 

● Strict stability (index 1): n-fold sums scale parameters linearly (na, nv). 

● Universality: the same parameter addition law holds for tensor, free, Boolean, and monotone 

convolutions. 
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Therefore Theorem 8.1 holds: the scalar “universal stability” of the Cauchy distribution lifts verbatim to the 

operator-valued (amalgamated) setting, with identical transform mechanics and parameter arithmetic. 

8.2. Infinite Divisibility Characterizations 

Theorem 8.2 (Universal Infinite Divisibility) 

Statement: The Cauchy family Cauchy(a,b), a∈ℝ, b>0, is infinitely divisible with respect to each of the four 

additive convolutions—classical (tensor), free, Boolean, and monotone—and the Lévy/linearizing exponents 

in all four theories are affine in the parameters (a,b). Equivalently, for every n∈ℕ there exist probability 

measures 𝜈𝑛 in the same Cauchy family such that 

● Classical: (𝜈𝑛)
{∗⁡𝑛} = Cauchy(a,b), 

● Free: (𝜈𝑛)
{⊞⁡𝑛} = Cauchy(a,b), 

● Boolean: (𝜈𝑛)
{⊎⁡𝑛} = Cauchy(a,b), 

● Monotone: (𝜈𝑛)
{▷⁡𝑛} = Cauchy(a,b), and moreover 𝜈𝑛 can be chosen explicitly as Cauchy(a/n, b/n) in all 

four cases. 

We prove infinite divisibility in each theory by exhibiting the corresponding linearizing transforms and 

showing that the Cauchy family has linear/affine exponents, so dividing parameters by n produces valid nth 

“roots,” whose n-fold convolution recovers the target Cauchy(a,b). 

Throughout, let C(a,b) denote Cauchy(a,b) with density 

𝑓{𝑎,𝑏}(𝑥) =
1

𝜋⁡𝑏
· ⁡ [1⁡ +⁡(

𝑥−𝑎

𝑏
) 2] {−1}. 

Key analytic transforms: 

● Fourier (characteristic) function: 𝜑{𝑎,𝑏}(𝑡) =𝑒𝑥𝑝 𝑒𝑥𝑝⁡(𝑖⁡𝑎⁡𝑡⁡– ⁡𝑏|𝑡|)⁡. 

● Stieltjes/Cauchy transform on ℂ+:⁡𝐺{𝑎,𝑏}(𝑧) =
1

𝑧⁡–⁡𝑎⁡+⁡𝑖⁡𝑏
. 

● Reciprocal Cauchy transform: 𝐹{𝑎,𝑏}(𝑧) =
1

𝐺{𝑎,𝑏}(𝑧)
= ⁡𝑧⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑏. 

In the three nonclassical theories we use the standard linearizations: 

● Free: R-transform, 𝑅{𝜇⊞𝜈} =⁡𝑅𝜇 +⁡𝑅𝜈. 

● Boolean: K-transform (self-energy), 𝐾{𝜇⊎𝜈} =⁡𝐾𝜇 +⁡𝐾𝜈. 

● Monotone: reciprocal Cauchy transforms compose, 𝐹{𝜇▷𝜈} =⁡𝐹𝜇 ∘ ⁡𝐹𝜈. 

The classical case uses the logarithm of the characteristic function. 
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1) Classical infinite divisibility 

Goal: For each n, find ν_n with 𝜈𝑛
{∗⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Take 𝜈𝑛 = ⁡𝐶 (
𝑎

𝑛
,
𝑏

𝑛
). Then 

𝜑{𝜈𝑛}(𝑡) =𝑒𝑥𝑝 𝑒𝑥𝑝⁡ (𝑖⁡ (
𝑎

𝑛
) 𝑡⁡ − ⁡(

𝑏

𝑛
) |𝑡|)⁡, 

so 

[𝜑{𝜈𝑛}(𝑡)]
𝑛
=𝑒𝑥𝑝 𝑒𝑥𝑝⁡(𝑖⁡𝑎⁡𝑡⁡ − ⁡𝑏|𝑡|) ⁡= ⁡𝜑{𝐶(𝑎,𝑏)}(𝑡). 

By uniqueness of characteristic functions, 𝜈𝑛
{∗⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Thus Cauchy(a,b) is classically infinitely divisible, and the Lévy–Khintchine exponent is affine: 

𝑙𝑜𝑔 𝑙𝑜𝑔⁡𝜑{𝑎,𝑏}(𝑡) ⁡= ⁡𝑖⁡𝑎⁡𝑡⁡ − ⁡𝑏|𝑡|. 

2) Free infinite divisibility 

Goal: For each n, find 𝜈𝑛⁡𝑤𝑖𝑡ℎ⁡⁡𝜈𝑛
{⊞⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

For Cauchy(a,b), compute its free R-transform: 

𝐺{𝑎,𝑏}(𝑧) =
1

𝑧⁡−⁡𝑎⁡+⁡𝑖⁡𝑏
, ℎ𝑒𝑛𝑐𝑒⁡𝐺{−1}(𝑤) = ⁡𝑎⁡ − ⁡𝑖⁡𝑏⁡ +

1

𝑤
, and 

𝑅{𝑎,𝑏}(𝑤) = ⁡𝐺{−1}(𝑤) −
1

𝑤
= ⁡𝑎⁡ − ⁡𝑖⁡𝑏, 

a constant (independent of w). Additivity under ⊞ gives 

𝑅{𝜇⊞𝜈} =⁡𝑅𝜇 +⁡𝑅𝜈. 

Take 𝜈𝑛 = ⁡𝐶 (
𝑎

𝑛
,
𝑏

𝑛
) . 𝑇ℎ𝑒𝑛⁡𝑅{𝜈𝑛}(𝑤) = ⁡ (

𝑎

𝑛
) – ⁡𝑖⁡ (

𝑏

𝑛
). Therefore 

𝑅
{𝜈𝑛

{⊞⁡𝑛}
}
(𝑤) = ⁡𝑛⁡ · ⁡𝑅{𝜈𝑛}(𝑤) = ⁡𝑎⁡ − ⁡𝑖⁡𝑏⁡ = ⁡𝑅{𝐶(𝑎,𝑏)}(𝑤), 

𝑠𝑜⁡𝜈𝑛
{⊞⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Hence the Cauchy family is freely infinitely divisible. The free Lévy exponent (R) is affine in (a,b). 

3) Boolean infinite divisibility 

Goal: For each n, find 𝜈𝑛 with 𝜈𝑛
{⊎⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Use the Boolean self-energy (K-transform): 𝐾𝜇(𝑧) = ⁡𝑧⁡–⁡𝐹𝜇(𝑧) with additivity 

𝐾{𝜇⊎𝜈} =⁡𝐾𝜇 +⁡𝐾𝜈. 

For 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏), 𝐹{𝑎,𝑏}(𝑧) = ⁡𝑧⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑏, 𝑠𝑜 
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𝐾{𝑎,𝑏}(𝑧) = ⁡𝑧⁡ −⁡(𝑧⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑏) = ⁡𝑎⁡ − ⁡𝑖⁡𝑏, 

a constant element, independent of z. Take 𝜈𝑛 = ⁡𝐶 (
𝑎

𝑛
,
𝑏

𝑛
) so that 

𝐾{𝜈𝑛}(𝑧) = ⁡ (
𝑎

𝑛
) − ⁡𝑖⁡ (

𝑏

𝑛
). 

Then 𝐾
{𝜈𝑛

{⊎⁡𝑛}
}
(𝑧) = ⁡𝑛⁡ · ⁡𝐾{𝜈𝑛}(𝑧) = ⁡𝑎⁡– ⁡𝑖⁡𝑏⁡ = ⁡𝐾{𝐶(𝑎,𝑏)}(𝑧), 

hence 𝜈𝑛
{⊎⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Therefore the Cauchy family is Boolean infinitely divisible, with affine Boolean exponent K. 

4) Monotone infinite divisibility 

Goal: For each n, find 𝜈𝑛 with 𝜈𝑛
{▷⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Monotone convolution linearizes by composition of reciprocal Cauchy transforms: 

𝐹{𝜇▷𝜈}(𝑧) = ⁡𝐹𝜇(𝐹𝜈)(𝑧). 

For 𝐶𝑎𝑢𝑐ℎ𝑦(𝑎, 𝑏), 𝐹{𝑎,𝑏}(𝑧) = ⁡𝑧⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑏, an affine map. Take 𝜈𝑛 = ⁡𝐶 (
𝑎

𝑛
,
𝑏

𝑛
), so 

𝐹{𝜈𝑛}(𝑧) = ⁡𝑧⁡ −⁡(
𝑎

𝑛
) + ⁡𝑖⁡ (

𝑏

𝑛
). 

The n-fold monotone convolution corresponds to the n-fold composition of 𝐹{𝜈𝑛}, 

𝐹
{𝜈𝑛

{▷⁡𝑛}
}
(𝑧) = ⁡𝐹{𝜈𝑛}

{∘⁡𝑛}(𝑧) 

= ⁡𝑧⁡ − ⁡𝑛 · (
𝑎

𝑛
) + ⁡𝑖⁡𝑛 · (

𝑏

𝑛
) = ⁡𝑧⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑏 

=⁡𝐹{𝐶(𝑎,𝑏)}(𝑧), 

𝑠𝑜⁡𝜈𝑛
{▷⁡𝑛} = ⁡𝐶(𝑎, 𝑏). 

Thus the Cauchy family is monotonically infinitely divisible, with affine “exponent” given by the affine self-

map F and composition turning the parameters additive. 

5) A unified “exponent is affine” viewpoint 

In all four theories, Cauchy(a,b) has a linear/affine linearizing object: 

● Classical: 𝑙𝑜𝑔 𝑙𝑜𝑔⁡𝜑{𝑎,𝑏}(𝑡) ⁡= ⁡𝑖⁡𝑎⁡𝑡⁡– ⁡𝑏|𝑡|. 

● Free: 𝑅{𝑎,𝑏}(𝑤) = ⁡𝑎⁡– ⁡𝑖⁡𝑏. 

● Boolean: 𝐾{𝑎,𝑏}(𝑧) = ⁡𝑎⁡– ⁡𝑖⁡𝑏. 

● Monotone: 𝐹{𝑎,𝑏}(𝑧) = ⁡𝑧⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑏. 
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Division of (a,b) by n divides the exponent accordingly, and the n-fold convolution re-adds it to (a,b). This 

proves infinite divisibility and simultaneously identifies the canonical nth roots as C(a/n, b/n) in every theory. 

6) Strictly 1-stable and Lévy characterizations 

Infinite divisibility for Cauchy(a,b) is part of a stronger statement: the family is strictly 1-stable (the stability 

index α=1) in each of the four additive theories. That is, for any c>0 there is a scaling/centering within the 

same family that reproduces the law under c-fold convolution. The affine form of the exponents and the 

additivity/composition properties are exactly the signatures of strict stability. 

In classical terms, the Lévy measure is proportional to 𝑡{−2}𝑑𝑡, which is the unique heavy-tail structure 

compatible with α=1 stability; in the free/Boolean/monotone settings, the corresponding analytic generators 

are constant/affine, characterizing the same 1-stable class. 

7) Operator-valued (amalgamated) extension 

All arguments extend verbatim to operator-valued settings over a unital 𝐶 ∗ −𝑠𝑢𝑏𝑎𝑙𝑔𝑒𝑏𝑟𝑎⁡𝐵, provided one 

defines the B-valued Cauchy family by the resolvent-affine ansatz 

𝐺{𝑎,𝑣}(𝑏) = ⁡ (𝑏⁡ − ⁡𝑎⁡ + ⁡𝑖⁡𝑣){−1}, with 𝑎 ∈ 𝐵𝑠𝑎, 𝑣 ∈ 𝐵+ constant, so that the linearizing transforms remain 

constant/affine: 

● Free (amalgamated): 𝑅𝑋(𝑤) ≡ ⁡𝑎⁡– ⁡𝑖⁡𝑣, 

● Boolean (amalgamated): 𝐾𝑋(𝑏) ≡ ⁡𝑎⁡– ⁡𝑖⁡𝑣, 

● Monotone (amalgamated): 𝐹𝑋(𝑏) = ⁡𝑏⁡– ⁡𝑎⁡ + ⁡𝑖⁡𝑣, and tensor amalgamation follows from resolvent 

calculus. Division of parameters by n again yields operator-valued nth roots, proving universal infinite 

divisibility in the B-valued context. 

Hence, for every n∈ℕ, the nth roots of Cauchy(a,b) exist within the Cauchy family simultaneously for the 

classical, free, Boolean, and monotone additive convolutions, and they are explicitly Cauchy(a/n, b/n). This 

follows from the linear/affine form of the respective linearizing transforms—log φ, R, K, and F—and their 

additivity or compositionality. Hence the Cauchy distribution is universally infinitely divisible across all four 

independence structures, both in the scalar and operator-valued (amalgamated) frameworks and Theorem 8.2 

stands proved.  

9. Future Research Directions 

9.1. Higher-Order Independence Structures 

The main emphasis in this work is placed upon the behavior of the Cauchy distribution in well-developed 

independent structures, such as tensor/free/Booléan, and monotone. Stronger study is needed for conditional 

and higher-order variations of independence like conditionally free, Boolean conditionality, and other new 

notions in non-commutative probability. This presents a strong motivation for further research. Compliance 
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with these guidelines could lead to the development of new convolutional structures or hybrid probabilistic 

frameworks to find out if the Cauchy distribution still has its universal nature or display qualitatively distinct 

characteristics in these enriched settings.[A]. In addition, extending the search to multivariate and hierarchical 

types of independence can shed light on how the Cauchy law can be used as an integral connector in 

complicated probabilistic frameworks. 

9.2. Discrete Analogues and Combinatorial Probability 

An especially promising avenue of investigation is in the construction of discrete analogues to the current 

results. Placing the Cauchy framework within discrete settings—e.g., non-commutative random walks, graph-

based independence structures, and algebraic combinatorics—can potentially unearth new relations between 

classical and non-commutative probability. This is an idea that can potentially unify these concepts with 

random graph theory, discrete stochastic processes, and bijective combinatorics, creating new doors of cross-

disciplinary applications, especially in information theory and theoretical computer science. 

9.3. Functional Limit Theorems and Stochastic Processes 

Adding to convergence theorems and transformation methods developed in this work to functional limit 

theoriemăs for Cauchy processes would be a natural extension. Outside the classical domain, new structural 

principles for stochastic processes can be discovered by exploring scaling limits, stability domains, and 

functional central limit theorems for non-commutative convolutions. By carrying out these inquiries, not only 

would they develop the mathematical theory of non-commutative probability but also provide a unifying view 

for complicated dynamical systems with heavy-tailed dynamics. 

9.4. Analytical and Algebraic Generalizations 

Future research may focus on analytical generalizations such as: 

● Extending the equivalence of Fourier and Stieltjes transforms to broader classes of distributions or 

transforms (e.g., Voiculescu transforms, Loewner evolutions). 

● Characterizing other distributions exhibiting universal behavior across multiple convolutions and 

determining if strict 1-stability or other invariances hold in more general algebraic contexts. 

9.5. Applications in Quantum Information and Mathematical Physics 

Taking into account the underlying importance of the Cauchy distribution (in complement to its general and 

functional significance) to quantum information science, signal processing, and statistical mechanics is one 

significant directional avenue for future study. Quantum technologies can investigate novel means of 

increasing the stability of quantum computation and communication by examining how Cauchy-induced 

stability influences state transmission, error correction schemes, and operator-algebraic forms. See also 

Theory for more information. 
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9.6. Computational and Numerical Approaches 

Another field of emphasis for future work will be the application of more advanced computational and 

numerical techniques to model Cauchy convolutions and approximate analytic transforms while maintaining 

flexibility for discrete and non-commutative settings. By establishing strong algorithmic platforms, not only 

would it enable the validation and calibration of theoretical predictions but also their extension to real-world 

data, stochastic systems in general, and computational models from some science or other. The activities hold 

the potential to enhance statistical inference, machine learning, and data-driven methods, as well as offer new 

methods for studying complex dynamical phenomena in physics and engineering. At a broad level, such 

computational studies can unmask the unifying function of the Cauchy distribution, further the conceptual 

foundations of non-commutative probability, and allow cross-fertilization between pure theory and inter-

disciplinary applications such as mathematics, quantum science, or any other relevant area. 

10. Conclusion 

This comprehensive analysis brings forth the Cauchy distribution as an important bridge between non-

commutative and classical probability models. The structural consistency of the Cauchy law with respect to 

tensor, free and Boolean convolution operations is established through its transform characteristics, temporal 

convergence behaviors, and cross-convolutional relationships. This leads to the Causian law being found 

everywhere. The robustness of the distribution brings to the fore its singular capability in reconciling what 

appears to be disparate concepts of independence. 

Through the illustration of the equivalence between Fourier and Stieltjes analytic techniques for complex 

moments, this strengthens the theoretical framework further as it gives the single-source method of probability 

measurement without finite classical moments. The development extends the analytical capabilities of non-

commutative probability, offering new methods for the study of distributions with heavy tails, infinite 

moments, and other non–classical properties, which is of growing significance within mathematics and 

physics. 

The here-obtained convergence theorems are as significant because they show that the Cauchy distribution 

naturally emerges as a limit law in different scaling regimes for all four grand independence structures. Due 

to the classical stability and infinite divisibility of the Cauchy law, it has become the kernel distribution for 

non-commutative probability theory just like the Gaussian principle is in the understandable domain of 

possibility. 

The effects of these findings are universal and diverse. Our findings indicate that quantum probability, random 

matrix theory, and statistical physics, where non-commuting variables are inherent, can be used to integrate 

structural insights from classical probability theory into the field, making the Cauchy law a unifying principle 

that links methodologies across disciplines. This is consistent with our research. The ability to fill the gap 

facilitates an effective transfer of ideas among probability, operator algebras, and physical sciences. 
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There are a number of ambitious avenues we can turn to. Incorporating these findings into higher-dimensional 

and operator-valued paradigms would not only increase the multivariate theory of non-commutative 

probability but also impact free analysis and quantum field theory. Cauchy-type dynamic functional limit 

theorems can be impacted by their relations with classical and non-commutative stochastic processes. In 

addition, the increasing importance of non-commutative structures in quantum information science and 

emerging mathematical areas calls for further investigations in order to understand Cauchy law as a common 

thread in all mathematical, physical, and computational sciences. This is especially the case in recent decades. 
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