QUANTUM CHEMICAL CALCULATIONS, SPECTROSCOPIC INVESTIGATION, NBO ANALYSIS AND DOCKING STUDY OF ETHYL INDOLE 2 CARBOXYLATE

K. R. Santhy^a, M. Daniel Sweetlin^b

^aResearch Scholar, St.John's College, Palayamkottai, Affiliated to Manonmanium sundaranar university, Abishekapatti, Tirunelveli- 627 012, India ^b Department of Physics, St.John's College, Palayamkottai, Affiliated to Manonmanium sundaranar university, Abishekapatti, Tirunelveli- 627 012, India

ABSTRACT

Optimized parameters, vibrational wavenumbers of Ethyl indole 2 carboxylate was carried out using B3LYP/6-311++G(d,p) basis set. Natural bond orbital (NBO) analysis explains the charge delocalization of the molecule. HOMO-LUMO gap and reactive descriptors were calculated on the molecule. Docking study for the title compound was also studied.

Key words: Ethyl indole 2 carboxylate, DFT,HOMO-LUMO, Molecular docking

Introduction

Indole, an aromatic heterocyclic compound consists of a six member benzene ring fused to five-member pyrrole ring containing nitrogen. Compounds containing indole nucleus involved research aimed at evaluating new products that possess interesting biological activities like anti hypersensitive, antiviral, anti-inflammatory, anticancer, anti-diabetic etc.[1]. Indole derivatives occur common in many natural products. Intra molecular hydrogen bonding interactions have received much attention from both practical and theoretical values, as they can establish the structure and activities of biological molecules[2].On these bases spectral investigations of indole and its derivatives have been reported by several authors[3-5]. The present study intend to explain the vibrational characteristics of Ethyl indole-2-carboxylate using FT-IR,FT - Raman and NBO analysis.

Experimental procedure

The title compound, Ethyl indole 2 carboxylate (EI2C) was purchased from Sigma Aldrich Chemicals, USA, which is of spectroscopic mark and hence used for recording the spectra as such without any additional purification. Bruker IFS 66V spectrometer is used to record the FT-IR and FT-Raman spectrum of the title compound in the range of 4000-100 cm⁻¹.

Computational methods

The molecular parameters of EI2C in the ground state are computed by performing 6-311++G(d,p) basis set. MOLVIB program written by Sundius [6, 7] is used to compute force field calculations and subsequent normal coordinate analysis including the least square refinement of the scale factors, potential energy distribution (PED), IR and Raman intensities.

Results and discussions

Molecular Geometry

The optimized bond lengths and bond angles of EI2C calculated by B3LYP/6-311++G(d,p) basis set is listed in Table1. The optimized structure of EI2C with labeling atoms is shown in Fig. 1. The optimized geometrical parameters are compared with the parameters of similar compounds. Drastic changes in the molecular parameters are caused due to the substituent in the indole ring. The C3-H16, C5-H17, C6-H18, C7-H19 and C8-H20 bond lengths are found to have magnitude between the values 1.078-1.084 Å. The longest bond length C4-C9 is observed in the benzene ring at 1.426 Å. This is due to the fusion of indole moiety at this carbon. The C10-O11 bond length is found to have the magnitude of 1.216 Å and supports the double bond character. The bond length C2-C10 (1.465 Å) is longer due to the electron withdrawing nature of carboxylic group. The bond angles N1-C2-C10, N1-C2-C3 and C3-C2-C10 in the centre of C2 are all between 109.38° and 132.3° and the total sums to 360.0° indicating that the C2 atom is of sp² hybridization type. The bond angle N1-C2-C3 is 109.29°, is due to the electron donating substituent.

Fig. 1. Optimized structure of EI2

Table 1							
Optimized geometrical parameters of EI2C computed at B3LYP/6-311++G (d,p) basis set							
Geometrical B3LYP/6-		Geometrical	B3LYP/6-	Geometrical	B3LYP/6-		
parameters	311 + + G(d,p)	parameters	parameters 311++G(d,p) parameters		311 + + G(d,p)		
Bond length(Å)		Bond angles(°)					
N1-C2	1.383	C2-N1-C9	109.3	C9-C8-H20	121.4		
N1-C9	1.371	C2-N1-H15	123.0	N1-C9-C8	107.4		
N1-H15	1.008	C9-N1-H15	127.8	C4-C9-C8	130.6		
C2-C3	1.377	N1-C2-C3	109.4	C2-C10-O11	122.0		
C2-C10	1.465	N1-C2-C10	118.3	C2-C10-O12	123.2		
C3-C4	1.428	C3-C2-C10	132.3	O11-C10-O12	112.6		
C3-H16	1.078	C2-C3-C4	107.0	C10-O12-C13	124.2		
C4-C5	1.408	C2-C3-H16	125.4	O12-C13-C14	116.4		
C4-C9	1.426	C4-C3-H16	127.7	O12-C13-H21	107.5		
C5-C6	1.383	C3-C4-C5	134.0	O12-C13-H22	108.6		
C5-H17	1.084	C3-C4-C9	107.0	C14-C13-H21	108.6		
C6-C7	1.413	C5-C4-C9	119.0	C14-C13-H22	112.1		
C6-H18	1.084	C4-C5-C6	118.9	H21-C13-H22	112.1		
C7-C8	1.385	C4-C5-H17	120.4	C13-C14-H23	107.9		
C7-H19	1.084	C6-C5-H17	120.7	C13-C14-H24	109.6		
C8-C9	1.400	C5-C6-C7	121.1	C13-C14-H25	111.0		
C8-H20	1.084	C5-C6-H18	119.8	H23-C14-H24	111.0		
C10-O11	1.216	C7-C6-H18	119.1	C23-C14-H25	108.3		
C10-O12	1.345	C6-C7-C8	121.5	H24-C14-H25	108.3		
O12-C13	1.450	C6-C7-J19	119.2				
C13-C14	1.515	C8-C7-H19	119.3				
C13-H21	1.092	C7-C8-C9	117.4				
С13-Н22	1.092	C7-C8-H20	121.2				

Vibrational analysis

The detailed vibrational assignments of fundamental modes along with the calculated IR intensities and Raman activities and normal mode description (characterized by PED) are reported in Table 2 along with the experimental values. The experimental and theoretical FT-IR and FT-Raman spectra of the title compound are shown in Fig. 2. and Fig. 3.

Fig. 2. (a) Experimental, (b) Simulated Infrared spectra of EI2C at B3LYP/6-311++ G(d,p) basis level

Fig. 3. (a) Experimental, (b) Simulated Raman spectra of EI2C at B3LYP/6-311++ G(d,p) basis level

C-H group vibrations

Substitution in position 2 leaves only one C-H group (C3-H16) in the pyrrole ring, and it has the highest frequency of 3126 cm⁻¹ which corresponds to theoretically calculated value 3128 cm-1 with PED contribution of about 99%. The bands at 3070, 3057 and 3051cm⁻¹ in FT-IR and 3060 cm⁻¹ in FT-Raman are identified as the C-H stretching modes of the phenyl ring. These values coincide with the calculated values given in Table. 3. Substitution patterns on the ring can be judged from the C-H out-of-plane bending in the region 900-675 cm⁻¹[8]. For the title compound the peaks identified at 932 and 821 cm⁻¹ in FT-IR and 935, 916, 822 and 769 cm⁻¹ in FT-Raman were assigned to out of plane bending vibrations.

NH group vibrations

The NH stretch in indole causes its absorption in the region $3500 - 3000 \text{ cm}^{-1}$ In the present study, the N-H vibrates at 3508 cm⁻¹ at B3LYP method and the in-plane bending was observed at 1381, 1388 cm⁻¹ in FT-IR and , 1172 cm⁻¹ in FT-Raman respectively.

Ethoxy vibrations

The asymmetric stretching for the CH₃ has magnitude higher than the symmetric stretching [9, 10]. In EI2C, the asymmetric stretching of CH₃detected in 3034 cm⁻¹ in FT-Raman is coincides with the calculated value of 3037 cm⁻¹ by B3LYP method. Symmetric stretching vibration of CH₃ is assigned at 2906 cm⁻¹ in FT-IR and at 2903 cm⁻¹ in FT-Raman spectrum of EI2C. In the present investigation the symmetrical methyl deformation modes are obtained at 1475 cm⁻¹ in FT-IR , 1476 cm⁻¹ in FT-Raman and asymmetrical deformations are detected at 1433 cm⁻¹ in FT-IR spectrum. The calculated wavenumbers at 1465 cm⁻¹ and 1430 cm⁻¹ show good agreement with the experimental values. The CH₃ rocking vibration[11] in methoxy derivatives has been assigned in the region 1190-1108 cm⁻¹. The rocking vibration for the title compound calculated at 1102 cm⁻¹ agrees with the peak localized at 1107 cm⁻¹ in FT-IR. The torsion mode is expected in the region 235±25 cm⁻¹. The observed wavenumber in FT-Raman at 244 cm⁻¹ assigned to the torsion mode for the title compound.

Table 2

Comparison of the experimental (FT-IR and FT-Raman) wavenumbers (cm⁻¹) and theoretical wavenumbers of EI2C calculated by B3LYP/6-311++G(d,p) basis set.

Experimental Wave numbers (cm ⁻¹)		Calculated wave number(cm ⁻¹)			Vibration assignment (%PED)
FT-IR FT.		B3LVP/6-311++G(d n)			
	Raman	Scaled	$\mathbf{A} \cdot \mathbf{IR}^{\mathbf{a}}$	I.R ^b	-
		Wavenumbers(cm ⁻¹)		-1	
3311(vs)	3309(w)	3508	103 379	72.828	wNH (99)
5511(15)	3126(w)	3128	0.257	68 861	\mathcal{W} CH (99)
_		3103	22 506	42 098	ν CH (98)
3079(s)		3066	18 034	331 672	ν CH (99)
3077(s)	3060(m)	3056	23 994	65 800	ν CH (99)
3051(w)	-	3046	1 905	140 375	ν CH (99)
	$\frac{1}{3030(yw)}$	3037	0.190	30.830	$\frac{\text{CH3ons}(99)}{\text{CH3ons}(99)}$
- 2983(s)	2079(m)	2976	27.946	113 250	CH3ips (94)
2983(8)	2979(III)	2970	16 087	65 501	CH2ps (94)
2937(8)	- 2022(m)	2930	17.664	129.051	CH2as (99)
2006(a)	2932(m)	2932	12 002	207 605	CH2ss (97) CH2ss (58) CH2ops (42)
$\frac{2900(8)}{1601(w_0)}$	2903(W)	1699	207.050	207.095	COds (70) vCO (7)
1091(vs)	1000(VS)	1000	597.930	233.843	COds(79), 0CO(7)
1019(8) 1527(a)	1019(8)	1560	0.804	93.135	0CC1 (33), 0Fing1 (10),
1527(8)	1527(VS)	1558	9.001	406.916	vCC1 (43), CCar1 (20)
-	1500(W)	1507	/5.896	406.816	0CC2(47), 0CC1(14)
1475(s)	1476(w)	1485	6.730	7.529	CH3ipb (32), CH3opb (24)
	1460()	1465	1 202	50.460	CC1 (27) 0CU1(22)
-	1468(w)	1465	1.393	59.468	$\frac{\partial CCI(37)}{\partial 2}$, $\beta CHI(22)$
-	1445(s)	1460	7.539	13.050	CH2sc1 (83), CH3opb (6)
1433(m)	-	1430	6.097	6.980	CH3opb (55), CH3sb (31)
-	1404(vw)	1413	10.647	85.618	βCH (34), CCar1(16), CNS(16)
1381(s)	1388(w)	1394	19.061	188.034	υCN (35), βNH (13)
-	1367(w)	1369	5.140	4.174	CH3ipb (56), CH3sb (30)
1340(s)	1348(s)	1347	34.487	13.027	CH2wag (53), CH3ipb (10)
1309(s)	1309(m)	1325	30.576	35.353	υCC1 (48), CH2roc (13)
-	1297(vw)	1298	50,606	14 328	υCC1 (37). βCH1 (31)
-	-	1276	102.701	72.153	$\beta CH1 (24) \nu CC2 (20) \nu CC1$
		1270	102.701	12.100	(20)
1251(vs)	1255(m)	1251	1.170	11.081	CH2twi (87), CH3opr (7)
-	1212(w)	1207	902.326	229.892	υCO (56), βCH1 (9)
1203(vs)	-	1200	116.048	4.826	βCH1(35), υCO (17)
-	1172(vw)	1174	9.772	1.070	βNH (36), υCN (19), βCH2 (12)
1145(s)	1144(w)	1147	2.904	0.455	CH2wag (52), CH3opr (25)
1117(m)	1110(w)	1109	9.973	5.011	βCH1 (79), υCC1 (8)
-	1107 (w)	1102	49.382	16.286	CH3ipr (30), vCO (26)
-	1076(w)	1089	2.957	18.428	βCH1 (54), υCC1(26)
-	-	1079	51.633	42.865	βCH2 (47), υCCar (13)
1020(s)	1008(m)	1013	8.809	40.810	νCO (21), Bring2 (19)
-	977(m)	990	11.475	34.462	$\nu CC1$ (56), βCH (22)
973(w)	956(vw)	961	11.480	10.200	υCCar (32), βring2 (25),
022()		027	0.017	0.041	vCO (21)
932(w)	-	937	0.016	0.241	γ CH1 (78), γ ring1 (21)

© 2018 IJRAR July 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

-	916(w)	908	1.755	0.433	γCH1 (90), γring1 (8)	
871(w)	897(w)	871	0.836	14.388	Bring1 (67), Bring2 (11)	
-	843(vw)	841	1.919	13.422	CH3ipr (40), vCCar (19),	
					$\nu CO(15)$	
821(m)	-	820	0.537	0.814	γCH1 (66), γring1 (15), γCH2	
					(7)	
-	818(w)	815	1.024	1.327	CO2wag (52), yring2 (13)	
-		814	13.198	15.511	vCC1 (19), vCCar (17)	
773(s)	-	772	0.005	0.411	CH2roc (40), CH3opr (35),	
					CH2twi (14)	
-	769(m)	769	68.216	0.484	γCH2 (53), γring1 (16),	
					γCH1 (10	
744(s)		742	14.014	8.637	CO2roc (17), vCC1 (16),	
					βring1 (15)	
-	735(vw)	730	24.352	0.063	γring1 (72), γring2 (17)	
-	-	715	36.890	0.286	γCH1 (82), γring1 (7)	
-	609(w)	607	1.75	13.326	βring2 (46), βring1 (31),	
					vCC1 (17)	
582(w)	581(w)	584	26.905	0.474	γring2 (67), γCN (11)	
-	550(w)	558	9.781	0.928	βring1 (69), vCC1 (5)	
546(w)	-	554	7.960	0.041	γring1 (84), γCH1 (10)	
	542(vw)	540	3.046	4.308	βCN (33), βring1 (23)	
-	-	507	38.099	0.418	γring2 (41), γNH (37), γring1 (11)	
-	433(w)	423	6.953	0.797	γring1 (64), TCN (21),	
					γCH1 (13)	
-	405(w)	405	2.893	1.798	CH2b (51), CH3ipr (12)	
-	-	316	9.906	2.226	CO2sci (31), vCCar (20),	
-					βring1 (16), vCC2 (12)	
	286(w)	285	16.899	1.447	β CO1 (27), υCCar (22),	
					CO2sci (19)	
	265(w)	278	3.969	0.017	γring1 (32), γCN (27)	
	244(w)	243	0.046	0.190	ΓCH3 (52), γring1 (16)	
-	-	238	0.098	0.010	ΓCN (39), γring1 (25)	
	220(w)	221	12.999	0.935	βCO1 (31), βCN (16),	
					βCH2 (15)	
	113(s)	117	0.820	1.492	ГОС (42), ГСМ (19),	
					γring2 (11)	
		78	0.777	0.368	ГNС (66), ГСН2 (12)	
	72(vs)	72	2.096	0.872	CO2sci (36), CO2roc (23)	
	63(w)	59	1.844	1.106	ΓΟC (34), γCN (25)	
	34(vw)	34	0.239	2.066	ГСН2 (81), CH2wag (6)	

Vs-very strong; s- strong; m- medium; w – weak; \boldsymbol{v} – stretching; β – in plane bending; γ - out- of plane bending; ^aCalculated IR intensities, ^bRaman activity.

The C=O stretching is a characteristic wavenumber of carboxylic acid [5]. The carbonyl stretching vibration mode is expected to occur in the region 1715-1680 cm⁻¹ [12] and in the present study this mode appears as strong band at 1691 cm⁻¹ in FT-IR and 1688 cm⁻¹ in FT-Raman spectrum coincides with the calculated value at 1688 cm⁻¹. The band at 1020 cm⁻¹ in FT-IR and 1008 cm⁻¹ in FT-Raman refer to C-O stretching. The theoretically computed value 1013 cm⁻¹ is assigned to ν C2-O12.

For the title compound the band at 2937 cm⁻¹ in FT-IR is assigned to CH_2 asymmetric stretching, and 2932 cm⁻¹ for symmetric stretching vibration which also goes well with the calculated values.

Silverstein et al. [13] assigned C-N stretching absorption in the region 1382 - 1266 cm⁻¹ for hetero aromatic amines. Subsequently, in the present observation, the theoretically computed C-N stretching vibrational mode is at 1394 cm⁻¹. The corresponding experimental wave numbers are 1381 cm⁻¹ in FT-IR and 1388 cm⁻¹ in FT-Raman.

C - **C** ring stretching

The C - C ring stretching modes are expected within the region 1650-1200 cm⁻¹. According to Varsanyi [9] the band of variable intensity are observed at 1625-1590, 1590-1575, 1540-1470, 1465-1430 and 1380-1280 cm⁻¹ for the five bands in this region and most of the ring modes are altered by the substitution to the aromatic ring. In the present work, the frequencies localized in the FT-IR spectrum at 1578, 1527, 1309, 973 cm⁻¹ and at 1587, 1522, 1500,1468, 1309,1297 and 990 cm⁻¹ in FT-Raman spectra were assigned to the C-C stretching vibrations. The calculated values by B3LYP method coincides with the experimental wavenumbers given in Table 3. The weak bands detected at 582, 547 cm⁻¹ in FT-IR, 609, 581, 550, 433cm⁻¹ in FT-Raman are assigned to C-C-C deformations. The calculated values 607, 584, 558 and 554 cm⁻¹ by B3LYP /6-311++ method show good agreement with the experimental values.

Natural bond analysis

In order to elucidate the intra-molecular and delocalization of electron density within the molecule, NBO analysis has been performed on the compound under study at the DFT/B3LYP/6-311++G(d,p) level. The E (2) values and types of the transition are shown in Table 3.

A very strong interaction has been observed between lone electron pair of O12 and neighbouring antibonding orbital of $\pi^*(C10-O11)$ and the other lone pair of O11 and neighbour $\sigma^*(C10-O12)$ antibonding orbital with the stabilization energy of 8.26 and 32.80 kcal/ mol respectively. The movement of π electron from donor (i) to acceptor (j) can make the molecule highly active. The strong intra molecular hyper conjugative interactions of the π electron of C-C to the C-C antibond of the rings lead to stabilization of the ring evident from data obtained. The intra molecular hyper conjugative interactions of π (C2-C3) to $\pi^*(C4-C9)$ and $\pi^*(C4-C9)$ leads to large stabilization of 15.74 and 22.81kcal/ mol respectively. In the case of π (C4-C9) orbital with $\pi^*(C2-C3)$, $\pi^*(C5-C6)$ and $\pi^*(C4-C9)$ and $\pi^*(C5-C6)$ shows the stabilization energy of 19.35 and 16.12 kcal/mol.

Second order perturbation theory analysis of fock matrix on NDO basis for E12C							
D0NOR	ED(i) (e)	ACCEPTOR	ED(j) (e)	E(2) kcal/mol	E (j) – E(i) a.u		
π(C2-C3)	1.79568	π*(C4-C9)	15.74	0.29	0.066		
		π*(C10-O11)	22.81	0.27	0.071		
π(C4-C9)	1.56788	π*(C2-C3)	19.82	0.27	0.067		
		$\pi^{*}(C5-C6)$	18.95	0.28	0.068		
		π*(C4-C9)	17.33	0.28	0.064		
π(C7-C8)	1.74112	π*(C4-C9)	19.35	0.28	0.070		
		$\pi^{*}(C5-C6)$	16.55	0.29	0.063		
n(1)N1	1.61166	$\pi^{*}(C2-C3)$	36.71	0.29	0.093		
		π*(C4-C9)	38.81	0.29	0.097		
n(2)O11	1.84812	$\pi^{*}(C2-C10)$	17.96	0.72	0.104		
		π*(C10-O12)	32.80	0.65	0.132		
n(1)012	1.96270	π*(C10-O11)	8.26	1.16	0.088		
π*(C4-C9)	0.49890	$\pi^{*}(C5-C6)$	226.37	0.01	0.079		
$\pi^*(C10-O11)$	0.29454	$\pi^{*}(C2-C3)$	93.42	0.03	0.081		

Table 3	
Second order perturbation theory analysis of fack matrix on NBO basis for	FI2C

^aE(2) means energy of hyper conjugative interactions

^bEnergy difference between donor and accepter i and j NBO orbitals

 ${}^{c}F(i,j)$ is the Fock matrix element between i and j NBO orbital

Frontier molecular orbitals

The energy levels of the HOMO and LUMO orbital computed at B3LYP/6-311++G (d,p) level for the compound EI2C is shown in Fig. 4. From the Fig. it is predicted that the HOMO and LUMO surfaces are well localized within the hetero aromatic ring. The electron delocalization in the pyrrole ring can be favourable due to the N atom in it. In EI2C, the HOMO is located over the indole ring and on carboxylic group due to the presence of

© 2018 IJRAR July 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

electronegative oxygen atoms. However, when electron transition takes place, some electrons will enter into the LUMO, the electron will mainly be delocalized on pyrrole ring and oxygen atoms. HOMO and LUMO energy values of a molecule can be used to calculate the following parameters. Ionization potential ($I = -E_{HOMO}$) is the minimum energy required to remove an electron from a molecule in gas phase. Electron affinity ($A = -E_{LUMO}$) is the amount of energy increasing when added an electron to a molecule in the gas phase. The energies of frontier molecular orbitals (E_{HOMO} , E_{LUMO}), energy gap (ΔE), chemical potential (μ), the global hardness (η), and electro negativity (χ) and additional electronic charge (ΔN_{max}) of EI2C and are listed in Table 4.

Calculated energy values of the EI2C by B3LYP/6-311++ me				
Parameters	B3LYP/6-311++G(d,p)			
HOMO(eV)	-0.2247			
LUMO(eV)	-0.06022			
Ionization potential	0.224696			
Electron affinity	0.06022			
Energy gap(eV)	0.164476			
Electronegativity (x,eV)	0.142458			
Chemical potential (µ, eV)	-0.14246			
Chemical hardness(ŋ, eV)	0.082238			
Chemical softness (S, eV)	6.079914			
Electrophilicity index (ω)	0.123387			

 Table 4

 Calculated energy values of the EI2C by B3LYP/6-311++ method

LUMO (first excited state)

 IJRAR1903039
 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org
 321

HOMO (Ground state)

 $E_{HOMO} = -0.2247 eV$

Fig. 4. HOMO and LUMO plot of Ethyl indole 2 carboxylate

Docking

The title molecule was selected to be docked into the active site of two receptors Aspergillus fumigates (2X8R), and Aspergillus niger (3EQA) of two fungal proteins and 2CIB,1AIB bacterial proteins which was downloaded from RCSB protein data bank. The ligand was docked into the functional sites of the respective proteins individually and the docking energy was examined to achieve a minimum value. Docked conformation which had the lowest binding energy was chosen to investigate the mode of binding. The molecular docking binding energies (kcal/mol) and inhibition constants (μ m) were also obtained and listed in Table 5.Among them, 2X8R exhibited the lowest binding energy at -4.43kcal/mol. The EI2C ligand interacts with different receptors are shown in Fig. 5.

Hydrogen bonding and molecular docking with antifungal protein targets							
Protein (PDB ID)	Bonded residues	Number of hydrogen bond interactions	Bond distance (Å)	Estimated Inhibition Constant (µm)	Binding energy (kcal/ mol)	Reference RMSD (Å)	
	GLN 57		2.3				
2X8R	ANS 120	3	2.3	340.36	-4.43	23.4	
	TRP 63		2.2				
	ARG329	2	1.9	78.86	-5.60	24.4	
3EQA	TYR		2.3				
2CIB	SER 261	1	2.4	689.31	-4.71	61.52	
1AIB	LEV 71		2.1				
	ASN 297	3	2.2	480.63	-4.53	48.45	
	PRO 298		2.5				

(a) **3EQA**

(b) 2XBR

(d) 1AIB

Fig. 5. Docking and Hydrogen bond

interaction of EI2C with (a) 3EQA (b) 2X8R (c) 2CBI (d) 1AIB protein structure

Conclusion

In the present study, quantum chemical calculations and spectroscopic investigations of Ethyl indole 2 carboxylate was carried out using DFT B3LYP/6-311++ method. The optimized parameters, vibrational spectrum of

the compound were obtained. The vibrational wavenumbers of the compound were exactly assigned and analyzed and the theoretical outcomes were compared with the experimental vibrations. NBO study reveals that lone pair orbital participates in electron donation to stabilize the molecule. The low HOMO-LUMO energy gap clearly reveals the structure activity relationship of the molecule. Molecular docking was performed to study the biological activity of the title compound. The calculated and analyzed results could provide useful information to the future experimentalist.

References

[1] A.R. Dhani, S.K. Avinash, M.V. Salenaagina, P.S. Teja, P. Masthanaiah, R.R.V.C. silpa, Indole: The molecule of diverse pharmacological activities J. Chem. Pharm.Res 3(5) (2011) 519-523.

[2] C. Cynithawise Bell, A. Dhas.D, STRUCTURAL, SPECTROSCOPIC AND THEORETICAL STUDIES OF METHYL 5,6-DIMETHOXY-1H-INDOLE-2-CARBOXYLATE, 2017.

[3] F. Billes, P.V. Podea, I. Mohammed-Ziegler, M. Toşa, H. Mikosch, D.-F. Irimie, Formyl- and acetylindols: Vibrational spectroscopy of an expectably pharmacologically active compound family, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74(5) (2009) 1031-1045.

[4] S.D. Dieng, J.P.M. Schelvis, Analysis of Measured and Calculated Raman Spectra of Indole, 3-Methylindole, and Tryptophan on the Basis of Observed and Predicted Isotope Shifts, The Journal of Physical Chemistry A 114(40) (2010) 10897-10905.

[5] K. Anitha, V. Balachandran, B. Narayana, B. Raja, Molecular orbital analysis, vibrational spectroscopic investigation, static and dynamic NLO responses of Ethyl 6-nitro-1H-indole-3-carboxylate, Materials Research Innovations (2017) 1-10.

[6] T. Sundius, Scaling of Ab Initio Force Fields by MOLVIB, Vibrational Spectroscopy, 29 (2002) 89-95.

[7] Molvib, Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program, No. 807, , 2002.

[8] J. Karpagam, N. Sundaraganesan, S. Sebastian, S. Manoharan, M. Kurt, Molecular structure, vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 3-hydroxy-2-naphthoic acid hydrazide, Journal of Raman Spectroscopy 41(1) (2010) 53-62.

[9] G.Varsanyi, Vibrational spectra of Benzene Derivatives Academic Press., New York, 1969.

[10] G. Socrates, infrared Characteristic group frequencies John-Wiley & Sons, New York, 1980.

[11] M.Arivazhagan, N.K. Kandasamy, G. Thilagavathi, Vibrational spectra, first hyperpolarizability, HOMO-LUMO analysis of 4-bromo 2-fluro anisole, Indian J Pure & Appl Phys., 50 (2012) 299-307.

[12] N.P.G.Rogers, A guide to the complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994.

[13] R.M. Silverstein, G.C. Basseler, T.C. Morill, Spectroscopic lentification of Organic Compounds, fourth ed., John Willey and Sons, New York, 1981.