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Abstract :  The objective of this paper is to define Eccentric membership function on the Vertex set and Edge set of the graph G 

and to construct Eccentric fuzzy graph using these functions. Also the order, size and degree of a vertex are defined for eccentric 

fuzzy graphs. Some bounds on eccentric membership function are established. In this paper, the concepts of operations on 

Eccentric fuzzy graphs are also derived.  

 Index Terms - Eccentric membership function and Eccentric fuzzy graph. 

I. INTRODUCTION 

 

One of the notable Mathematical inventions of the 20th Century is that of Fuzzy sets by Lotfi. A. 

Zadeh [6] in 1965. He introduced the concepts of  fuzzy subset of a set as a way for representing 

uncertainty. This idea have been applied to wide variety of scientific area. Research on the theory of fuzzy 

sets has been witnessing an exponential growth; both within Mathematics and in its Applications. This 

ranges from traditional mathematical subjects like Logic, Topology, Algebra, Analysis, etc to Pattern 

Recognition Theory, Artificial Intelligence, Operations Research, Neural Networks and Planning etc. 

Consequently, Fuzzy Set Theory has emerged as a potential area of Interdisciplinary Research and Fuzzy 

Graph Theory is of recent interest. Fuzzy graphs are useful to represent relationship which deal with 

uncertainty and it differs from Classical graph. The first definition of Fuzzy graph by Kaufman in 1965 

was based on Zadeh Fuzzy relations. Rosenfeld [3] introduced another elaborate definition, including 

fuzzy vertex and fuzzy edges, several fuzzy analogues of graph theoretic concepts such as Paths, Cycles, 

Connectedness etc are also defined. Though the concept of fuzzy graph is very young, it has been growing 

fast and the numerous applications in various fields. The objective of this paper is to define Eccentric 

membership function on the Vertex set and Edge set of the graph G and to construct Eccentric fuzzy 

graph using these functions. Also the order, size and degree of a vertex are defined for eccentric fuzzy 

graph. Some bounds on eccentric membership function are established. In this paper, the concepts of 

operations on Eccentric fuzzy graphs are derived.  

II. PRELIMINARIES 

Graphs are simple models of relations. A graph is convenient way of representing information involving relationship between 

objects. The objects are represented by vertices and relations by edges. Let G be a simple, finite and connected graph with vertex 

set V(G) and edge set E(G). The order p of the graph G is the number of vertices on the graph and the size q is the number of 

edges on the graph. The distance d(u, v) between the  two vertices u and v of the graph G is the length (number of edges) of the 

shortest path between them. The eccentricity ecc(v) of a vertex v in a graph G is the distance from v to a vertex farthest from it,  

ecc(v) = max{d(u, v) / u ∊V(G)}. The radius of the graph G is defined as the minimum eccentricity of vertices in G and is 

denoted by rad(G). That is, rad(G) = min{ecc(u)/ u ∊V(G)}. The diameter of G is the maximum distance between two vertices of 

G and is denoted by diam(G). That is, diam(G) = max{ecc(u)/ u ∊V(G)}. For any v ∊ V(G) the neighborhood NG(v) (or simply 

N(v)) of v is the set of all vertices adjacent to v in G. The degree of a vertex v ∊V(G) is the number of edges incident with that 

vertex and is denoted by degG(v) or deg(v). If all the vertices of a graph are of same degree, then the graph is a regular graph, 

otherwise it is an irregular Graph. A cubic graph is a regular graph in which all the vertices are of degree 3. For a complete 

graph Kp, all the vertices are of degree p – 1. A graph G is a bipartite graph if V(G) can be partitioned into two subsets  U and 

W, called partite sets, such that every edge of G joins a vertex of U and a vertex of  W. If every vertex of U is adjacent to every 

vertex of W, then G is called a complete bipartite graph. A complete bipartite graph with |U| = m and |W| = n is denoted by 

Km,n. 

When there is vagueness in the description of the objects or in its relationship or in both, it is natural to design a fuzzy graph 

model. Let V be a finite non-empty set and E be the collection of two element subset of V. A Fuzzy Graph F(G) = ( σ, μ ) is a set 

with a pair of membership functions, fuzzy vertex set function σ : V → [0, 1] and the fuzzy  edge set function  μ : E → [0, 1] such 

that μ(u, v) ≤ min{σ(u), σ (v)} (or σ(u) ⋀ σ (v); ⋀ stands for minimum )  for all uv ∊ E(G). The Underlying Crisp Graph of the 

fuzzy graph F(G) = ( σ, μ ) is denoted by  G* = (V, E), where V(G*) = {u ∊ V(G) : σ(u) > 0 } and  E(G*) = {(u, v) ∊ V(G) ⨯V(G) 

: μ(u, v) > 0}.  Let  F(G) = ( σ, μ ) be a fuzzy graph on G = (V, E) and  S ⊆ V(G) then the order pf and size qf of F(G) are defined 

as pf  = 
V(G)v

σ(v) and qf  = 
E(G)uv

v)μ(u, . An edge e = uv of a fuzzy graph is called an effective edge if μ(u, v)= min{σ(u),σ (v)}.  

The strength of the connectedness  between two nodes u, v in a fuzzy graph F(G) is v)(u,μ


= sup { v)(u,μ
k

/ k = 1, 2, …} 
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where  μk(u, v) ≥ sup{μ(u,u1) ⋀ μ(u1,u2) ⋀… ⋀μ(uk-1,v)}. An arc (u, v) is said to be a strong arc  μ(u, v) ≥ v)(u,μ


and the node 

v is said to be the strong neighbor of u. If the arc (u, v) is not a strong arc then u is called isolated node. In a fuzzy graph F(G) 

every arc is strong arc then the  fuzzy graph is called strong arc fuzzy graph. Let u be a node in fuzzy graph F(G) then                  

N(u) = {v/ (u, v) is a strong arc} is called neighborhood of u and N[u] = N(u)∪{u} is called closed neighborhood of u. A fuzzy 

graph F(G) = (σ, μ) is said to be connected if any two vertices in G are connected.   

III. MAIN RESULT 

3.1. Eccentric Fuzzy Graph 

Notation 3.1.1. 









b

a denotes upto the first digit of the decimal when a is divided by b. For example 









3

2  = 0.6 and 









5

5  = 1.0.

 

 

Definition 3.1.2. Let G = (V, E) be a graph with diameter of  G be diam(G). An Eccentric Fuzzy Graph ΕF(G) = (σe , μe) is a 

set with a pair of eccentric membership functions, eccentric fuzzy  vertex set function σe(G) : V(G) → [0, 1] on the vertex set is 

defined as  =
diam(G)

ecc(u)
(u)σe  for all u ∊ V(G) and the eccentric fuzzy edge set function  μe(G) : E(G) → [0, 1] on the 

edge set is defined as μe(u, v) = min{σe(u) , σe(v)} for all uv ∊ E(G). That is, every edge is an effective edge.  

Let ΕF(G) be an eccentric fuzzy graph on G(V, E). The order pef and size qef of the eccentric fuzzy graph ΕF(G)( σe, μe) 

are defined as pef  = ∑
F(G))V(∈v

e (v)σ
E

and qef  = ∑
F(G))E(∈uv

e v)(u,μ
E  

where v ∊ V(ΕF(G)) and uv ∊ E(ΕF(G)). 

Example 3.1.3. 

 

                                       ΕF(G) ≅ 

  

 

 

 

 

 

 

 

 

ecc(a) = ecc(h) = 6;  ecc(b) = ecc(i) = ecc(g) = 5; ecc(c) = ecc(f) = 4;  ecc(d) = ecc(e) = 3. 

diam(G) = max{ecc(u)/ u ∊ V(G) } = 6. For all v ∊ V(ΕF(G)), σe(v) = 
diam(G)

ecc(v)
, 

 σe(a) = σe(h) = 
6

6
= 1;  σe(b) = σe(i) = σe(g) =

6

5
= 0.8;  σe(c) = σe(f) = 

6

4
= 0.6; σe(d) = σe(e) = 

6

3 = 0.5. 

Theorem 3.1.5. The eccentricity fuzzy graph ΕF(G) of order pef  and size qef  corresponding to the graph G(p, q), satisfies pef ≤ p 

and qef ≤ q. 

Proof.  By the definition, pef  = ∑
F(G))V(∈u

e (u)σ
E

= ∑
F(G))V(∈u diam(G)

ecc(u)

E

. The farthest path on the graph G with p vertices are of 

length p – 1.  

Therefore pef  ≤ ∑
F(G))V(∈u 1-p

1-p

E  

≤ 
V(G)u

1

 
≤ 1 + 1 + . . . + p times  

≤ p.  

qef   =  ∑
F(G))E(∈uv

e v)(u,μ
E   

=  ∑
F(G))E(∈uv

ee (v)σ∧(u)σ
E  

≤ ∑
F(G))E(∈uv

1∧1
E  

≤ ∑
F(G))E(∈uv

1
E

≤ 1 + 1 + . . . + q times 

 ≤ q. 

 Hence  qef≤ q.  

This completes the proof of the theorem. 
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Figure3.1.4 
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Theorem 3.1.6. Let EF(G) be an eccentric fuzzy graph of order pef  and size qef  corresponding to the graph G(p,q), then pef = p 

and qef = q if and only if  ecc(u) = diam(G) for all u ∊ V(G). 

Proof. Let pef  = p then by the definition of the eccentric fuzzy graph ∑
F(G))V(∈u

e (u)σ
E  

= p implies ∑
F(G))V(∈u diam(G)

ecc(u)

E  

=  p. This is 

possible only if ecc(u) = diam(G).  

Conversely, let ecc(u) = diam(G) for all u ∊ V(G).  

Then pef  = ∑
F(G))V(∈u

e (u)σ
E   

= ∑
F(G))V(∈u diam(G)

ecc(u)

E  

= ∑
F(G))V(∈u

1 
E  

= 1 + 1 + . . . + p times 

 = p.  

Also, let qef  = q then by the definition of the eccentric fuzzy graph ∑
F(G))E(∈uv

e v)(u,μ
E  

= q implies ∑
F(G))E(∈uv

ee (v)σ∧(u)σ
E  

=  q. This is 

possible only if ecc(u) = diam(G). 

Conversely, let ecc(u) = diam(G) for all u ∊ V(G).  

Then  qef  =  ∑
F(G))E(∈uv

e v)(u,μ
E  

      = ∑
F(G))E(∈uv

ee (v)σ∧(u)σ
E

  

      = ∑
F(G))E(∈uv

1∧1
E  

       

= ∑
F(G))E(∈uv

1
E  

       

= 1 + 1 + . . . + q times  = q.  

Remark 3.1.7. (i). For a complete graph Kp, pef = p and qef = q. In this case ecc(u) = 1 for all    u ∊V(G). 

                         (ii). For a complete bipartite graph Km,n, pef = p and qef = q. In this case ecc(u) = 2 for all u ∊V(G). 

(iii). There exist an irregular graph in which pef = p and qef = q. Consider the graph G, given in Figure 3.1.8.  

 

 

 

 

 

 

 

For the graph G1, ecc(u) = 2 for all u ∊ V(G1). Therefore diam(G1) = 2. Hence pef = p = 5 and qef = q = 7.  

(iv). There exist a regular graph in which pef < p and qef < q. Consider the graph G2 given in Figure 3.1.9 

 

 

 

 

 

 

 

 

For the graph G2,  

ecc(v1) = ecc(v3) = ecc(v8) = ecc(v9) = 5; ecc(v2) = ecc(v4) = ecc(v7) = ecc(v10) = 4 and ecc(v5) = ecc(v6) = 3.  

Also diam(G2) = {max(ecc(u))/ u ∊V(G2)} = 5. 

 =
)diam(G

)ecc(
)(σe

2

1

1

v
v = 

5

5  = 1.  

Similarly σe(v3) = σe(v8) = σe(v9) = 1;  

σe(v2) = 
5

4
= 0.8 = σe(v4) = σe(v7) = σe(v10) ; 

σe(v5) = 
5

3
= 0.6 = σe(v6).  

pef   = ∑
))F(GV(∈u

e

2

(u)σ
E  

= 4 ⨯ 1 + 4 ⨯ 0.8 + 2 ⨯ 0.6  

G1 

Figure 3.1.8. 
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Figure 3.1.9. 
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= 8.4 < 10 = p.   

qef   =  ∑
))F(GE(∈uv

e

2

v)(u,μ
E  

= ∑
))F(GE(∈uv

ee

2

(v)σ∧(u)σ
E  

= 2⨯ (1+0.8+0.8+0.6+0.6+0.8+0.8) + 0.6  

= 2 ⨯ (5.4) + 0.6  

= 11.5 < 15 = q. 

Theorem 3.1.10. Let ΕF(G) be an eccentric fuzzy graph corresponding to the graph G, then σe(u) ≥ 
2

1 for all u∊V(G). 

Proof.  Let ΕF(G) be an eccentric fuzzy graph corresponding to the graph G. Then by the definition  ecc(u) ≥ rad(G)  for all u ∊ 

V(G).  - - - - - (1).  

Also diam(G) ≤ 2 rad(G). Hence 
diam(G)

1 ≥ 
rad(G)2

1

×
- - - - (2).  

By the definition of eccentric membership function,  

=
diam(G)

ecc(u)
(u)σe

≥ 
rad(G)×2

rad(G)
 ≥ 

2

1

 

(from (1) and (2)). 

Corollary 3.1.11. Let ΕF(G) be an eccentric fuzzy graph then pef  ≥ 
2

p  and qef ≥ 
2

q . 

Proof. Let ΕF(G) be an eccentric fuzzy graph corresponding to the graph G. Let pef  and qef  be the order and size of ΕF(G) 

corresponding to the graph G of order p and size q. By definition, pef  = ∑
F(G))V(∈u

e (u)σ
E

 ≥ ∑
F(G))V(∈u 2

1

E

(by Theorem 3.1.10.) ≥ 
2

p          

qef    = ∑
F(G))E(∈uv

e v)(u,μ
E  

=

∑
F(G))E(∈uv

ee (v)σ∧(u)σ
E   

≥ ∑
F(G))E(∈uv 2

1
∧

2

1

E  

≥ ∑
F(G))E(∈uv 2

1

E  

≥ 
2

q . 

 Hence the Corollary. 

Remark 3.1.12. Let ΕF(G) be an eccentric fuzzy graph then, from Theorem 3.1.5. and from Corollary 3.1.11. There is an 

immediate consequent that 
2

p  ≤ pef  ≤ p and 
2

q  ≤ qef  ≤ q. 

Definition 3.1.13. Let ΕF(G) be an Eccentric Fuzzy graph corresponding to the graph G then the Degree of an Eccentric 

Fuzzy Graph denoted  by degef(u) is defined by  

degef(u) = deg(u) ⨯ σe(u) for all u ∊ V(G). 

Illustration 3.1.14. Consider a path on 5 vertices. That is G ≅ P5. Then diam (Pp) = 4.  Let V(P5) = {v1, v2, v3, v4, v5} where v1 

and v5 are terminal vertices.  

Also  σe(v1) =
)diam(P

)ecc(v

5

1 =
4

4 = 1 = σe(v5);  

σe(v2) =
)diam(P

)ecc(v

5

2 =
4

3 = 0.7 = σe(v4);  

σe(v3) =
)diam(P

)ecc(v

5

3 =
4

2 = 0.5.  

Hence  degef(v1) = deg(v1) ⨯ σe(v1) = 1⨯1= 1=  degef(v5);  

degef(v2) = deg(v2) ⨯ σe(v2) = 2⨯0.7 = 1.4 =  degef(v4)  

degef(v3) = deg(v3)⨯σe(v3) = 2⨯0.5 = 1. 

Definition 3.1.15. Let ΕF(G) be an Eccentric Fuzzy graph corresponding to the graph G then the Maximum Edge Membership 

Function v)(u,μ
'

e = σe(u) ⋁ σe(v) for all uv ∊E(ΕF(G)) where  ‘⋁’ stands for the maximum value.  

Illustration 3.1.16. Let G ≅ P5 then  

)v,(vμ 21

'

e = σe(v1) ⋁ σe(v2) = 1 ⋁ 0.7 = 1 = )v,(vμ 54

'

e ;   

)v,(vμ 32

'

e = σe(v2) ⋁ σe(v3) = 0.7 ⋁ 0.5 = 0.7 = )v,(vμ 43

'

e . 

Proposition 3.1.17. Let ΕF(G) be an Eccentric Fuzzy graph corresponding to the graph G then, degef(u) ≤ deg(u) for all u ∊ 

V(ΕF(G)). 

Proof. By Definition 3.1.13., degef(u) = deg(u) ⨯ σe(u) f or all u ∊ V(G).  
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But σe(u) = 
diam(G)

ecc(u)
≤ 1.  

Hence degef(u) ≤ 1⨯ deg(u) ≤ deg(u) for all u ∊ V(G).  

Definition 3.1.18. Let ΕF(G) be an Eccentric Fuzzy graph corresponding to the graph G then the Maximum Size qef' is defined as 

qef' = ∑
E(G)∈uv

'

e v)(u,μ .  

From the definition it follows that  qef  ≤ qef'. 

Illustration 3.1.19. For the graph G ≅ P5, qef' = ∑
F(G))E(∈uv

e v)(u,'μ
E

= 1 + 0.7 + 0.7 + 1 = 3.4. 

3.1.20. Handshaking Lemma: Let ΕF(G) be an Eccentric Fuzzy graph corresponding to the graph G, then the sum of the 

degrees of all the vertices of ΕF(G) is equal to twice the average of the size qef  and maximum size qef' of ΕF(G). 

Illustration 3.1.21. 
 

 

 

 

 

 

 

For the graph given in Figure 3.1.22.,  

ecc(a) = ecc(c) = ecc(d) = ecc(g) = 3;  

ecc(b) = ecc(e) = ecc(f) = 2 and  

diam(G) = 3.  

By definition σe(a) =
diam(G)

ecc(a)
= 

3

3
= 1 = σe(c) = σe(d) = σe(g);   

σe(b) =
diam(G)

ecc(b) = 
3

2
= 0.6 = σe(e) = σe(f).  

By definition  degef(a) = σe(a)⨯deg(a) = 1⨯2 = 2;   degef(b) = 0.6⨯5 = 3.0;  

degef(c) = 1⨯1 = 1;    degef(d) = 1⨯1 = 1;                                

degef(e) = 0.6 ⨯3 = 1.8;    degef(f) = 0.6⨯3 = 1.8;   

degef(g) = 1⨯3 = 3.  
 

By definition μ e(a,b) = σe(a) ⋀ σe(b) = 1 ⋀ 0.6 = 0.6 = μ e(g,f) = μ e(c,b) = μ e(d,e) = μ e(g,b);   

μ e(a,g) = 1 ⋀ 1 = 1; μ e(b,e) = 0.6 ⋀ 0.6 = 0.6 = μ e(b,f) = μ e(f,e).                         

μ e'(a,b) = σe(a)⋁σe(b) = 1 ⋁ 0.6 = 1 = μ e'(g,f) = μ e'(c,b) = μ e'(d,e) = μ e'(g,b);   

Similarly  μ e'(a,g) =  1;                   μ e'(b,e) = 0.6 = μ e'(b,f) = μ e'(f,e).  

Sum of the degrees of all the vertices of ΕF(G)  

= degef(a) + degef(b) + degef(c) + degef(d) + degef(e) + degef(f) + degef(g)  

= 2 + 3 + 1 + 1 + 1.8 + 1.8 + 3 = 13.6.  

qef(G)  = μ e(a,b) + μ e(g,f) + μ e(c,b) + μ e(d,e) + μ e(g,b) + μ e(a,g) + μ e(b,e) + μ e(b,f) + μ e(f,e)   

= 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 1 + 0.6 + 0.6 + 0.6 = 5.8.      

qef'(G)  = 1 + 1 + 1 + 1 + 1 + 1 +0.6 + 0.6 + 0.6 = 7.8.  

qef(G) + qef'(G) = 5.8 + 7.8 = 13.6.  

Twice the average of qef(G) and qef'(G) = 2⨯
2

(G)'q+(G)q efef = 13.6. Hence the Lemma. 

Definition 3.1.23. In an Eccentric Fuzzy graph ΕF(G)(σe, μ e) the vertices which has the minimum vertex eccentric 

membership function are called the central vertices. The vertices which has the vertex eccentric membership function equal to 1 

are called the terminal vertices and all the other vertices are the intermediate vertices.   

Remark 3.1.24. There exists Eccentric Fuzzy graph ΕF(G) with no intermediate vertices.   

Example 3.1.25. For the graph given in Figure 3.1.22., the vertices a, c, d and g are the terminal vertices and the vertices b, e and 

f are the central vertices. In this graph there are no intermediate vertices.  

For the graph given in Figure 3.1.9., the vertices v1, v3, v8 and v9 are the terminal vertices and the vertices v5 and v6 are 

the central vertices and  the vertices v2, v4, v7 and v10 are the intermediate vertices. 

3.2. Operations on Eccentric Fuzzy graph:  

3.2.1.Union: Let ΕF(G1): )μ,σ(
11 ee  and ΕF(G2) : )μ,σ(

22 ee  be two Eccentric Fuzzy graphs with G1*(V1,E1) and G2*(V2,E2) . 

Let G* = G1* ∪ G2* = (V1∪V2, E1∪E2) be the union of G1* and G2*. Then the union of two Eccentric Fuzzy Graphs ΕF(G1) and 

ΕF(G2) is a fuzzy graph  

 G = G1∪G2: )μμ,σσ(
2121 eeee ∪∪ defined by  

 =

21ee

12e

21e

ee

V∩V∈u);u(σ∧)u(σ

VV∈u(u);σ

VV∈u(u);σ

)(u)σ∪(σ

21

2

1

21

 and    

∧

=

21ee

12e

21e

ee

E∩E∈uv);v(μ)u(μ

EE∈uv);(u,μ

EE∈uvv);(u,μ

)(u)μ∪(μ

21

2

1

21

 

ΕF(G) 

Figure 3.1.22. 

a 
g 

b 
c 

f 
e d 
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Remark 3.2.2 The union of two Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) need not be an Eccentric Fuzzy Graph, but it is a 

Fuzzy Graph.  

Example 3.2.3. 

 

 

 

 

 

 

 

 

 

The union of two Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) given in Figure 3.2.4. and Figure 3.2.5. is as follows 

 

 

 

 

 

 

 

 

 

 

The graph G given in Figure 3.2.6. is not an Eccentric Fuzzy Graph since  σe(v3) ≠ 1. 

3.2.7.Intersection: Let ΕF(G1): )μ,σ(
11 ee

 and ΕF(G2) : )μ,σ(
22 ee  be two Eccentric Fuzzy graphs with G1*(V1,E1) and 

G2*(V2,E2) . Let G* = G1*∩G2* = (V1∩V2, E1∩E2) be the intersection of G1* and G2*. Then the intersection of two Eccentric 

Fuzzy Graphs ΕF(G1) and ΕF(G2) is a fuzzy graph G = G1∩G2: )μ∩μ,σ∩σ(
2121 eeee defined by  

 
∧

=∩
otherwise;0

V∩V∈u);u(σ)u(σ
)(u)σ(σ

21ee

ee
21

21

 

and =∩
otherwise;0

E∩E∈uv);v(μ∧)u(μ
)(u)μ(μ

21ee

ee
21

21
 

Remark 3.2.8. The intersection of two Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) need not be an Eccentric Fuzzy Graph, but it 

is a Fuzzy Graph. 

Example 3.2.9. The intersection of two Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) given in Figure 3.2.4 and Figure 3.2.5. is as 

follows 

 

 

 

 

 

 

The graph G given in Figure 3.2.10. is not an Eccentric Fuzzy Graph since σe(v2) ≠ 1. 

3.2.11.Complement : Let ΕF(G): )μ,σ( ee  be an Eccentric Fuzzy graph with G*(V,E). Then the complement of  Eccentric Fuzzy 

Graph ΕF(G) is a fuzzy graph Gc: )μ,σ( c

e

c

e
defined by                       

c

eσ (u) = (u)σe
  for all u ∊ V(ΕF(G)) and 

 0  =v)(u,μc

e
if  0v)(u,μe > for  uv ∊ E(ΕF(G)) and  

                 
(u);σ∧ (u)σ ee   

otherwise.  

 Remark 3.2.12. The complement of an Eccentric Fuzzy Graph ΕF(G) need not be an Eccentric Fuzzy Graph, but it is a Fuzzy 

Graph. It also follows that ((ΕF(G))c)c = ΕF(G).  

Example 3.2.13. Consider the Eccentric Fuzzy Graph ΕF(G) given in Figure 3.2.14. 

 

 

 

 

 

 

 

 

 

Definition 3.2.17. An Eccentric Fuzzy graph ΕF(G) is self complementary if (ΕF(G))c = ΕF(G). 
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\Example 3.2.18. Consider the Eccentric Fuzzy Graph ΕF(G) given in Figure 3.2.19. 

 

 

 

 

 

 

 

 

 

 

The complement of ΕF(G) is given in Figure 3.2.20 , since (ΕF(G))c = ΕF(G) the Eccentric Fuzzy graph given in Figure 

3. is a self complementary Eccentric Fuzzy graph.  

3.2.21. Ring sum: Let ΕF(G1): )μ,σ(
11 ee

 and ΕF(G2) : )μ,σ(
22 ee

 be two Eccentric Fuzzy graphs with G1*(V1,E1) and 

G2*(V2,E2) . Let G* = G1* ⊕ G2* = (V1∪V2, (E1∪E2) – (E1∩E2)) be the ring sum of G1* and G2*. Then the ring sum of two 

Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) is a fuzzy graph G = G1⊕G2: )μμ,σσ(
2121 eeee ⊕⊕ defined by  

 =⊕

21ee

12e

21e

ee

V∩V∈u);u(σ∧)u(σ

VV∈u(u);σ

VV∈u(u);σ

)(u)σ(σ

21

2

1

21

 and    =⊕

21ee

12e

21e

ee

E∩E∈uv);v(μ∧)u(μ

EE∈uv);(u,μ

EE∈uvv);(u,μ

)(u)μ(μ

21

2
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Remark 3.2.22. The union of two Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) need not be an Eccentric Fuzzy Graph, but it is a 

Fuzzy Graph.  

Example 3.2.23. The ring sum of two Eccentric Fuzzy Graphs ΕF(G1) and ΕF(G2) given in Figure 3.2.4. and Figure 3.2.5. is as 

follows 

 

 

 

 

 

 

 

 

 

 

The graph G given in Figure 3.2.24. is not an Eccentric Fuzzy Graph since σe(v2) ≠ 1 and σe(v4) ≠ 0.6. 

 

IV. CONCLUSION 

In this paper the Eccentric Fuzzy Graph is defined and explained with illustrations. The operations on (crisp) graphs such as 

union, intersection, complement and ring sum are extended to Eccentric Fuzzy Graphs. 

 

V. OPEN PROBLEMS 
 To study the properties on the operations of Eccentric Fuzzy Graphs. 

 To extend the operations of Join, Cartesian Product and Corona on Eccentric Fuzzy Graphs. 
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