DETERMINATION OF ANTIDEMENTIA DRUGS BY SPECTROPHOTOMETRIC AND CHROMATOGRAPHIC METHODS – AN **OVERVIEW**

¹Santosh V. Gandhi*, ² Shubham S. Pawar, ³ Yogesh S. Punde, ⁴Namrata G. Bawaskar. ¹Professor, ^{2, 3,4} Research Student AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune-411001, India.

Abstract: Cholinesterase inhibitors are otherwise called acetylcholinesterase inhibitors are a group of medications that can restrain the typical breakdown of acetylcholine (ACh). Acetylcholine is the principal neurotransmitter found in the human body and has capacities in both the peripheral nervous system and the central nervous system. In patients having state of Alzheimer's disease there has been irreversible degeneration of ACh -producing neurons bringing about scholarly shortcoming, cognitive decline just as other neural limits showed decay of mindfulness, learning, stress response, rest and so on. Consequently, to treat these symptoms cholinesterase inhibitors are widely used. There has been huge examination and research on wide scope of analytical techniques that could be valuable in the assessment of cholinesterase inhibitors in pure drug, pharmaceutical formulations and biological matrices. Scientific strategies, for example, HPLC, high pressure thin layer chromatography, ultraviolet (UV) spectrophotometry, high performance liquid chromatography - mass spectroscopy, ultra-performance liquid chromatography have been accounted for the assessment of cholinesterase inhibitors in single as well as in mixture with different medications or drugs. This complete review covers the greater part of the spectrophotometric and chromatographic methods depicted for the assurance of Rivastigmine, Galantamine, Donepezil in pure drug forms, in different pharmaceutical dosage forms and biological fluids. From the extensive review it tends to be found that countless chromatographic methods have been created and HPLC techniques have been generally utilized in the discovery and assessment of cholinesterase inhibitors.

Keyword: Spectrophotometric and Chromatographic methods, Cholinesterase Inhibitors, Rivastigmine, Galantamine, Donepezil.

I. INTRODUCTION

Alzheimer's Disease is portrayed as irreversible degeneration of acetylcholine-producing neurons, intellectual weakness, reformist and the amassing of neurofibrillary tangles and amyloid plaques [1]. The cholinergic framework assumes a basic part in memory, close by other significant neural capacities like consideration, learning, stress reaction, attentiveness and rest, and tactile data. Studies show that acetylcholine (ACh) is correlated to the balance of obtaining, encoding, union, reconsolidation, elimination, and recovery of memory [1]. The slow loss of cholinergic neurons in Alzheimer's Disease (AD) may, hence, add to the behavioral and cognitive decline displayed by AD patients. The generally acknowledged cholinergic speculation suggests that a segment of the psychological and behavioral decay related with Alzheimer's are the consequence of diminished cholinergic transmission in the central nervous system [2]. As acetylcholinesterase is an enzyme that is discharged by cholinergic neurons to quickly hydrolyze ACh at the synaptic cleft to deliver choline and acetate which is likewise the primary driver for lessening ACh quantity which prompts Alzheimer's disease. To treat this condition of a patient cholinesterase inhibitors are used. The principle pharmacological activities of this Cholinesterase Inhibitor drugs are accepted to happen as inhibition of cholinesterase, improving cholinergic transmission, which mitigates the indications of Alzheimer's dementia [3]. Cholinesterase (Che) Inhibitors presently utilized in the treatment of Alzheimer's Disease (AD) are the Acetylcholinesterase (AChE)- Selective Inhibitors, Donepezil and Galantamine, and The Dual Ache and Butyrylcholinesterase (BuChe) Inhibitor Rivastigmine. Notwithstanding contrasts in selectivity for Ache and BuChE, ChE inhibitors likewise vary in pharmacokinetic and pharmacodynamics properties, and these distinctions could altogether have effect on safety, resistance, and efficacy [2].

II. MECHANISM OF ACTION

Acetylcholinesterase is an enzyme produced by cholinergic neurons to quickly hydrolyse ACh at the synaptic cleft to deliver choline and acetate [1,4]. Choline is subsequently reused once again into the presynaptic cholinergic neuron by means of reuptake by the high-affinity choline transporter. There are several evidences showing the expected relationship of the acetylcholinesterase enzymes in the development of amyloid fibrils [5]. Cholinesterase inhibitor reversibly and competitively inhibits the acetylcholinesterase enzyme in the central nervous system (to be specific in the frontal cortex and hippocampal regions) by binding to the acyl-binding pocket and the choline-binding site of the enzymes dynamic site [1,4]. By impeding the breakdown of ACh, cholinesterase inhibitor improves ACh levels in the synaptic cleft. Nicotinic acetylcholine receptors (nAChR) in the central nervous system are for the most part communicated at the presynaptic neuronal membrane to control the arrival of numerous neurotransmitters, like ACh, glutamate, GABA, dopamine, serotonin, norepinephrine. Agonists of nAChRs improve execution in intellectual undertakings, while antagonists of nAChR hinder psychological cycles. A few investigations show an abatement in the articulation and action of nAChRs in patients with AD, which may clarify the decrease in central cholinergic neurotransmission in these patients. cholinesterase inhibitor binds to nAChRs at the allosteric site, prompting a conformational change of the receptor, expanded ACh discharge, and expanded action of adjoining glutaminergic and serotoninergic neurons [3,6]. The regulation of nAChRs works with both excitatory and inhibitory cholinergic transmissions in brain tissues and builds receptor sensitivity. The

tweaked arrival of different synapses by cholinesterase inhibitor may likewise add to the upregulation of nAChRs and improvement of social indications in Alzheimer's disease [6].

III. PHARMACOKINETICS

All cholinesterase inhibitors are orally ingested, while, their oral bioavailability is variable (Donepezil =100%, Galantamine =90-100%, Rivastigmine =60-72%,). Plasma t½ of these medications ranges 70 hours for Donepezil, 7 hours for Galantamine and 1.5 hour for Rivastigmine. Cholinesterase inhibitors are mainly metabolized by cyp3a4 and cyp2d6 while Rivastigmine is used by cholinesterase-mediated hydrolysis. The pharmacokinetic properties of cholinesterase inhibitors shift in each person, which may be an outcome of differential action. These drugs are significantly discharged in urine and faeces. [4,7,8,9]

Drugs included in the cholinesterase inhibitors their chemical structure with the chemical name and molecular weight is given in the Table 1. Synopsis of contrasts in the route of administration, bioavailability, metabolism, plasma protein binding and excretion between the individual compounds is depicted in Table 2. The different physicochemical properties of cholinesterase (Che) inhibitors are addressed in Table 3.

Table 1: Structural details of Drug.

Drug	Structure	Chemical name	Molecular weight
Galantamine	Galantamine Br OH H Galantamine	(4aS,6R,8aS)- 5,6,9,10,11,12- hexahydro- 3-methoxy- 11-methyl- 4aH- [1]benzofuro[3a,3,2-ef] [2] benzazepin- 6-ol	287.35 g/mol
Rivastigmine	Rivastigmine	(S)-N-Ethyl-Nmethyl- 3-[1- (dimethylamino)ethyl]-phenyl carbamate hydrogen-(2R,3R)- tartrate.	250.337 g/mol
Donepezil	Donepezil	2-((1-Benzylpiperidin-4-yl)methyl)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one	379.5 g/mol

Table 2: Pharmacokinetic Parameters of Drugs.

Pharmacokineticparameter	Galantamine	Rivastigmine	Donepezil
Administration route	Oral	Oral	Oral
Bioavailability %	90-100%	60 to 72%	100%
Metabolism	CYP2D6 and CYP3A4	By cholinesterase- mediated hydrolysis.	liver, primarily by CYP3A4 and CYP2D6
Elimination half-life, h	7 hours	1.5 hour	70 hours
Plasma Protein binding %	18%	40%	96%
Excretion	95% urine and 5% faeces,	97% in urine	57% in urine, and 5% in faeces.

Table 3: Pka and Solubility of Drugs

Drugs	Pka	Solubility
Galantamine	7.97	Galantamine is highly soluble in water
Rivastigmine	8.85	Rivastigmine very soluble in water, soluble in ethanol and acetonitrile, slightly soluble in noctanol and very slightly soluble in ethyl acetate.
Donepezil	8.9	Donepezil is soluble in organic solvents such as chloroform 50 mg/ml and approximately 25 mg/ml in acetone. Donepezil is sparingly soluble in aqueous solutions.

IV. REPORTED ANALYTICAL METHODS

As there are various analytical methods that have been performed on all acetylcholinesterase inhibitors such as High-performance liquid chromatography, Gas chromatography, high performance thin layer chromatography, ultra-performance liquid chromatography, HPLC-MS-MS, ultra violet spectrophotometry etc. on the drug or pharmaceutical and finished product also on the blood, plasma, brain of human also lab animals such as Rats.

1. HPLC Method

High-performance liquid chromatography, once known as high-pressure liquid chromatography (HPLC), is a method in the analytical chemistry used to isolate, recognize and quantify each and every component in a mixture.

Chromatography includes a sample being dissolved in the mobile phase (which might be a liquid, supercritical fluid or a gas). The mobile phase is then constrained through a fixed, non-miscible stationary phase. The stages are picked with the end goal that segments of the samples will have varying solubilities in both phases. A part of segment which is imbibed in the stationary phase will take more time to go through it than a segment which isn't unexpectedly dissolvable in the fixed stage i.e., stationary phase however solvent in the mobile phase. Because of these distinctions in mobilities, test parts will get isolated from one another as they travel through the stationary phase. Chromatography is an exceptionally extraordinary partition measure for a huge number of reasons, chromatography can be utilized to isolate sensitive items since the conditions under which it is performed are not ordinarily extreme. There is an amazing expansion in the use of high-performance liquid chromatography for assurance of contemplated cholinesterase inhibitors. HPLC has been utilized routinely in all fields of cholinesterase inhibitors research. The announced strategies dependent on utilization of various stationary phase (silica c8, c18, Inertsil-ODS-3 column, Kromasil 100Å C8 column), mobile phase and utilizing UV, fluorescence, PDA or tandem mass spectrometry for detection. The different revealed HPLC and UPLC techniques (counting stability studies) for quantitative assurance of cholinesterase inhibitors either as single or in mix with different drugs in unadulterated pure drug, pharmaceutical finished forms and organic liquids such as biological fluids are shown [10-58]. HPLC method details for Rivastigmine, Galantamine and Donepezil are given in Table 4, Table 5, Table 6, respectively.

2. HPTLC Method

Spectro densitometric assurance of Rivastigmine after vortex assisted solid phase extraction is augmented for the assurance of Rivastigmine hydrogen tartrate in bulk and case in which MSPE was executed on human plasma to preconcentrate RIV. Coprecipitation process was applied to obtain magnetic nanoparticles and characterised by SEM, FTIR, PXRD, DLS [59].

For Rivastigmine Stability-Indicating HPTLC method was also performed for the Pharmaceutical Dosage Forms and bulk drug in which Chromatographic separation was done on the aluminium backed silica gel 60F254 HPTLC plates with chloroform-methanol 4:6 (v/v) as mobile phase $^{[60]}$.

For Galantamine HPTLC has been practiced for the analysis of the concentrates of Narcissus jonquilla Pipit, and TLC-densitometry has been utilized for the measurement of Galantamine in the concentrates of Galanthus elwesii Hook and Galanthus nivalis L. The developed and validated TLC-densitometric method was advisable for the simultaneous estimation of Galantamine hydrobromide and Pyridine [61]

For Donepezil stability indicating HPTLC method and validated HPTLC method was reported for bulk and pharmaceutical dosage form in which silica gel 60 F254 on aluminium sheet was used as a stationary phase [62,63]. HPTLC methods details for Rivastigmine, Galantamine and Donepezil are given in Table 7, Table 8, Table 9, respectively.

3. UV Spectrophotometric Method

The dissolvable which is utilized in spectrophotometry ought not retain UV radiation in a similar locale as the sample whose range is being resolved. By and large, the solvents which don't contain the conjugated system are generally suitable for performing Spectro photometric examination regardless of whether they shift at the most limited frequency at which they remain transparent to ultra-violet radiation.

Various methods such as second derivative spectra, first derivative ratio spectra, calibration curve method first order derivative spectra have been reported for Rivastigmine.64-67

Methods such as calibration curve method [68], first order derivative [69] have been reported for Galantamine.

and assay after solvent extraction, calibration curve method, comparison between calibration curve method and extractive ion-pair complexation method, calibration curve method with colorimetric method have been reported for Donepezil.70-76 UV Spectrophotometric methods details for Rivastigmine, Galantamine and Donepezil are given in Table 10, Table 11, Table 12, respectively.

4. HPLC MS-MS Method

For estimation of Rivastigmine only and also with its major metabolite NAP 226-90 a sensitive and rapid liquid chromatographytandem mass spectrometry (LC-MS/MS) performed on human plasma and on rat brain and plasma. Separation was done using Surveyer HPLC with Betabasic-8 (5.0 m, 100 mm × 4.6 mm), MTBE Star RP-18 (Merck) column, Gemini C18 column (150 2.0 mm I.D.), Nucleosil CC-125/2 C18 reversed-phase column [36,37]. Mobile phase used for the separation are 0.1% formic acid in acetonitrile and 0.1% formic acid in water (70:30%, v/v), methanol-0.02 M ammonium acetate (55:45, v/v), ammonium hydroxide/methanol (50:50, v/v), acetonitrile 80% in H2O (v/v) containing 0.1% formic acid, for the proposed column respectively. flow rate used was in the range of 0.2-1.0 ml/min, and correlation of coefficient was found to be 0.99-0.9988 [77-80]

For determination of Galantamine sensitive and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed by using an internal standard such as glimepiride and loratadine on human plasma or without internal standard on human heparinised plasma water. Separation was done by using YMC Hydrosphere C18 (50 2 mm i.d., 3 mm; YMC Co., Japan), a reversephase C18 column, Symmetry Shield 3.5 18 mm (4.6 mm I.D.350 mm). Mobile phase used are acetonitrile -0.01M ammonium acetate (95:5, v/v), 0.03% formic acid-acetonitrile (20:80, v/v), 0.01 M ammonium acetate-acetonitrile (85:15, v/v) and flow rate was maintained between 0.2 ml/min and 1.5 ml/min. correlation of coefficient was found to be 0.99-0.996 which shows that given methods are reliable and can be used in practical. [81-83].

HPLC-MS/MS method have been developed for determination of Donepezil in rat plasma and human plasma. In rat plasma Donepezil like compound is determined by using tandem mass spectrometry on an LTQ XL system and this method can be applicable to pharmacokinetic study especially in animals [84]. In another method, enantiomers of Donepezil were determined in human plasma by API 3000 in MRM mode. As this method shown to be rapid, accurate and sensitive and is more suitable for pharmacokinetic study in human plasma [85]. HPLC MS/MS methods details for Rivastigmine, Galantamine and Donepezil are given in Table 13, Table 14, Table 15, respectively

5. UPLC Method

A simple UPLC method was observed for Rivastigmine for fast separation of its potential impurities' positional isomers in pure drug and drug product. The separation was achieved using UPLC BEH Phenyl (100 mm 2.1 mm, 1.7 lm) and the mobile phase use are A) acetonitrile-Disodium hydrogen orthophosphate (pH 7.5; 0.01 M)-Triethylamine (10:90:0.1 v/v/v), B) acetonitrile-water (80:20 v/v). The flow rate was made constant at 0.4 ml/msin and correlation of coefficient was observed to be 0.999 which indicates reliability of the method and it can be applied in industry or laboratory practices [86].

UPLC method has been enforced for the estimation of Galantamine with ESI-MS, MS, DoE on human plasma, guinea pig plasma and plant alkaloids [87-90]. Jiang Wanga stated that UPLC-MS method used in guinea pig plasma can be applied for the pre-clinical bioavailability study of novel Galantamine formulations [89]. Muriel Noetzli reported a simultaneous estimation of cholinesterase inhibitor is possible on UPLC-MS/MS by using reverse phase column (BEH C18 2.1 mm × 50 mm; 1.7 m) for separation of components. Mobile phase used is buffer–acetonitrile (80:20, v/v) [90].

An UPLC method has been developed for Donepezil in combination with UV and mass spectroscopy [91-92]. In which combination with mass spectroscopy showed precise and accurate results compared to that of UPLC-UV. Although UPLC-UV method is used in biorelevant media for comparison of pharmacokinetic study [92], the UPLC-MS/MS method which is applied on dog's plasma is more practically reliable for pharmacokinetic study [91]. UPLC methods details for Rivastigmine, Galantamine and Donepezil are given in Table 16, Table 17, Table 18, respectively.

Table 4: Rivastigmine HPLC Methods.

Sr. No.	Column	Mobile Phase	Wavelength	Flow Rate	Linearity Range	Linearity R ²	Reference
1	Thermo Hypersil C4 column (25 cm X 4.6 mm, 5 µm)	0.01 M ammonium acetate buffer adjusted to pH 4.0 with orthophosphoric acid and Acetonitrile (60:40, v/v)	220 nm	1.0 ml/min	1.5 -7.5 μg/ml	0.998	10
2	Silica column (250mm × 4.6mm, 5 μm)	Acetonitrile- 50 mm aqueous sodium dihydrogen phosphate (17: 83, v/v) pH 3.1	200 nm	1.3 ml/min	0.5–16 ng/ml	0.999	11
3	4.6 mm 250 mm, ODS, Xterra RP18, 5 mm	Dissolve 2.02 g of 1-octane sodium sulfonate in 1000 ml Milli – Q water sonicate to dissolve and adjust the PH of the solution 3.0 with ortho phosphoric acid and filter through 0.45 mm pal pharma nylon 66 membrane filter. The mobile phase was prepared by mixing buffer and acetonitrile in the ratio of (70: 30, v/v)	217 nm	1.0 ml/min	50 - 300 mg/ml	0.9999	12
4	Grace Vydac monomeric column C18 (4.6 × 250 mm) 5 mm	20 Mmol /L phosphate buffer pH 3.0 and acetonitrile (75: 25, v/v)	Fluorometric detection with excitation (ex) and emission (em) wavelength at 220 and 293 nm, respectively	1.0 ml/min	10-3000 ng/ml	0.9998	13
5	C18 column (5mm; M/s Merk kgaa, Germany)	20mm phosphate buffer pH 3.5 and acetonitrile (75:25, v/v)	Excitation wavelength (λmax) of 220nm and emission wavelength (λmax) of 293nm	1.0 ml/min	10-800 ng/ml	0.9999	14
6	Kromasil 100Å C8 column (4.6 150 mm; 5mm)	Monobasic ammonium phosphate buffer (8.6 mg/ml; pH 7.0), acetonitrile and methanol in a (50:25:25, v/v/v)	215 nm	1.2 ml/min	20-300 mg/ml	0.999	15
7	A reverse phase monomeric column C18 (4.6 × 250 mm, 5 μm	Acetonitrile and 20 Mmol/L phosphate buffer pH 3.0 (25:75, v/v)	Excitation and emission wavelengths at 220 nm and 293 nm, respectively	1.0 ml/min	25–3000 ng/ml	0.9929	16
8	C18 (Eurospher 100-5, 250 × 4.6 mm, Knauer, Germany) column equipped with a guard column (Eurospher	20 mM acetate buffer (pH 4.0, adjusted with triethylamine, TEA)/acetonitrile (80:20, v/v	211 nm	1.2 ml/min	In rat plasma and brain were 80–3000 ng/ml and 100–3000 ng/ml, respectivel y	0.9673 &0.9911	17

	100-5 C18, 5 ×		1	<u> </u>		1	
	4 mm)						
9	Inertsil, C18,	Potassium phosphate mono basic	217 nm	1.0	10-100	0.999	18
	250 x 4.6mm.	buffer (pH 2.5± 0.05):		ml/min	μg/ml		
	5μ	Acetonitrile (70:30, v/v)					
10	Cellulose-based	Hexane: isopropanol:	210 nm	1.0	1500–9000	0.998	19
10	chiral stationary	trifluoroacetic acid (80:20:0.2,	210 mm	ml/min	ng/ml	0.550	
	phase Chiralcel	v/v/v)					
	OD-H (250 mm						
	× 4.6 mm, 5m, Daicel make),						
	which was						
	safeguarded						
	with a 1 cm						
	long guard column						
	Chiralcel OD-H						
11	C18 column	Acetonitrile and pH 5.5 acetate	224 nm	1.0	0.1–50	0.9999	20
	(250 mm 4.6	buffer solution (28:72, v/v)		ml/min	μg/ml		
	mm, I.D., 5						
	mm, Shodex, Japan).						
12	C18 analytical	1mm di ammonium hydrogen	217 nm	1.0	0.15-5	0.999	21
	column (25cm	phosphate buffer $(pH = 2)$ and		ml/min	μg/ml		
	× 4.6 I.D., 1.8	acetonitrile (75:25, v/v)					
13	μm Thermostated	Acetonitrile 80% in H2O (v/v)	221 nm	0.35	10–100	0.995	22
13	column with a	containing 0.1% formic acid	221 11111	ml/min	pmol/g	0.993	22
	Nucleosil CC-	3					
	125/2 C18						
	reversedphase column						
	(Macherey &						
	Nagel)						
14	Inertsil-ODS-3	10mm ammonium acetate:	217 nm	1.0	2-10 μg/ml	0.9999	23
	column (250 × 4.6mm, 5µ)	methanol (35:65, v/v)		ml/min			
15	ODS Hypersil	Acetonitrile: methanol: buffer	215 nm	0.6-	5-40 ng/ml	0.9819	24
	column (C18	(45:20:35v/v)		0.9ml/	3		
	classical,			min			
	250×2,1 mm, 5 μm) (Thermo						
	Fisher						
	Scientific,						
1.0	Germany)	A 1 . CC	Engiteti	1.0	10 1000	0.00	25
16	Inertsil-ODS-3 C18(250 ×	Ammonium acetate buffer (20mm, pH4.5)	Excitation and emission	1.0 ml/min	10-1000 ng/ml	0.98	25
	4.6mm, 5µ).	&acetonitrile74:26v/v)	wavelengths	1111/111111	116/1111		
		,	at 293 nm				
			and 220 nm,				
17	Vortov Uzmanii	Acetonitrile and 0.01 M di-	respectively 214 nm	1.3	0.400-	0.9983	26
17	Vertex Hypersil reversed phase	sodium hydrogen phosphate pH	214 IIIII	ml/min	0.400- 0.772 mg/	0.3383	20
	C18 column	8.4, (70:30, v/v)		11111	ml		
	(25 cm 4.6 mm	·					
	I.D., particle						
18	size 5 µm C18 column	Acetonitrile and acetate buffer	224 nm	1.0	100–500	0.99	27
	$(250 \times 4.6 \text{ mm},$	pH 5.5 solution (28:72, v/v)		ml/min	μg/ml		
	5 μm, Shodex,						
	Japan)						

Table 5: Galantamine HPLC Methods.

Sr No.	Column	Mobile Phase	Wavelength	Flow Rate	Linearity Range	Linearity R ²	Reference
1	Inertsil C18	40% acetonitrile and 60% 10 mm o-phosphoric acid	Fluorescence detector (excitation 375 nm/emission 537 nm)	1.2 ml/min	125-2000 ng/ml in water, urine and plasma.	Plasma and Urine 0.9999 0.9995	28
2	Chiralpak AD-H (250 · 4.6 mm) column	N-hexane, 20% propionic acid in isopropanol and diethyl amine in the ratio of (80:20:0.2, v/v/v)	289 nm	0.8 ml/min	0.84-15 mg/ml	0.9999	29
3	Zorbax Extend-C18 (150x4.6 mm I.D., 5µm)	0.1% triethylamine aqueous solution and acetonitrile (84:16, v/v)	288 nm	1.0 ml/min	7.1-225.0 µg/ml	0.9999	30
4	Discovery HS F5 268 J. Mal 'akov 'a et al. / J. Chromatogr. B 853 (2007) 265–274 (Supelco, Bellefonte, PA, USA) 5 m particle size (4.6 mm I.D. × 150 mm).	15% of acetonitrile and 85% of aqueous ammonium acetate (5mmol/L) pH 6.8 (v/v) to 25% of acetonitrile and 75% of aqueous ammonium acetate (5mmol/L) over 4 min	Fluorescence detector at excitation and emission wavelengths of 280 and 310 nm.	1.0 ml/min	0.50-63.47 nmol/g of galantamine, from 0.32- 41.42 nmol/g of O- desmethyl- galantamine, from 0.54- 569.40 nmol/g of N- desmethyl- galantamine and from 0.70- 89.03 nmol/g of epigalantamine	0.999	31
5	RP-C8 column	Acetonitrile: methanol: water (containing 7.5 mm triethanolamine, pH 6.9)	292 nm	1.0 ml/min	-	0.995	32
6	Phenomenex C18 (250 4.6 mm) column)	Acetonitrile: ammonium formate buffer (2 mm, pH 9.0) (70:30, v/v)	289 nm	1.0 ml/min	-		33
7	RP C18	50 mm disodium hydrogen phosphate: acetonitrile (80: 20, v/v)	280 nm	1.0 ml/min	(5-10 mg/ml, 2.10-4 mg/ml	0.988	34
8	ODS Hypersil column (C18 classical, 250×2,1 mm, 5 μm	Solvent A: acetonitrile, Solvent B: methanol and Solvent C: buffer solution of sodium acetate/acetic acid, 0.2M, pH 4.8.	290 nm	0.9 ml/min	0.5-40 μg/ml	0.9989	35
9	Shim Pack CLC-ODS column (150 mm × 4.0 mm I.D., 5 µm particle size)	Acetonitrile, water, triethylamine (20:80:1, v/v/v, pH -7.0)	Fluorescence detection excitation wavelength 290 nm and emission wavelength of 320 nm.	1.0 ml/min	2.0–160 ng/ml	0.9994	36
10	Phenomenex C18 column (250 x 4.6 mm I.D - 5µm particle size)	1.0 mm ammonium formate: acetonitrile (30:70, v/v)	289 nm	0.4 ml/min	20-80 μg/ml	0.999	37
11	Luna C18 column (4.6 mm × 250 mm, 5 m,	0.2% triethylamine in 10 nm ammonium acetate (pH 8.3) and acetonitrile (65:35, v/v)	Fluorescence detector excitation and emission	0.7 ml/min	3-300 ng/ml	0.9998	38

	Phenomenex,		wavelengths				
	Torrance, CA,		280 and 310				
	USA)		nm,				
12	Kinetex EVO	5% Acetonitrile, 20%	240 nm	1.0 ml/min	0.004-2 mg/ml	0.9990	39
	C18 15 x 4.6	acetate buffer at 3.5 and					
	mm 5 µm,	0.025 M/L diethyl amine					
	Scherzo SM-	was used as mobile phases					
	C18 150 x 4.6	on C18 and SM C18					
	mm, 3 µm	columns. On SCX column					
	(Imtakt,	mobile phase containing					
	USA) or Luna	8% of acetonitrile and					
	SCX 150 x	phosphate buffer at pH 2.5					
	4.6 mm, 5 µm	*					
	(Phenomenex,						
	ÙSA).						
13	RP C18 ODC	50 mm disodium	280 nm,	1.5 ml/min	=	=	40
	Spherisorb	hydrogen phosphate:	ŕ				
	$(250 \text{ mm} \times$	acetonitrile (80:20, v/v)					
	$4.6 \text{ mm} \times 5$	` , ,					
	mm)						
14	Supelcosil	Ammonium carbonate,	292 nm	1.0 ml/min	0.025-0.4	0.995	41
	LC18 column	water solution and			mg/ml		
	(250 ×4.6 mm	acetonitrile (HPLC grade					
	I.D.; 5 μm;	99.93 % purity)					
	Supelco,	(85:15, v/v)					
	Belleforte,						
	PA, USA)						
15	Silica gel	Methanol –20 mm	282 nm	1.0 ml/min	0.080-0.800	0.99	42
	column (4.6	ammonium formate			mg/ml		
	$mm \times 250$	aqueous solution (pH 3.2)					
	mm	(65:35, v/v)					
16	Zorbax	Ammonium	210 nm	2.2 ml/ min	20-150 ng/ml	0.999	43
	Eclipse XDB-	acetate/acetonitrile (94:6,					
	C18 4.6×75	v/v)					
	mm (3.5 m						
	particle						

Table 6: Donepezil HPLC Methods.

Sr No.	Column	Mobile Phase	Wavelength	Flow Rate	Linearity Range	Linearity R ²	Reference
1	A reversed-phase TRACER EXCEL ODS-A	Acetonitrile-10 mm acetate buffer (pH 6.0)-THF (60: 35: 5, v/v/v)	Fluorescence detection at 264 nm (ex) and 313 nm (em).	1.0 ml/min	1-100 ng/ml	0.998	44
2	A keystone Ph RP 250 × 4.6 mm I.D., 5 μm particle size anal. Column	Mixt. Of methanol, 0.02 M phosphate buffer (pH 7.5 \pm 0.1) and triethylamine in the ratio (60:40:0.5 v/v/v)	268 nm	1.0 ml/min	50-150 μg/ml	0.9970	45
3	A Wakosil C18 column 250 mm × 4.6 mm, 5 μ,	Phosphate buffer (0.02 M, pH 3.67) and Acetonitrile	230 nm	1.2 ml/min	20-150 μg/ml	0.99934 by HPLC 0.99927 By UV	46
4	Poroshell 120 EC-C18 column (7.5 × 4.6 mm, 2.7 μm)	Phosphate buffer (10 mm, pH 2.5)-acetonitrile (75/25, v/v)	Fluorescence detection at 325 nm (ex) and 390 nm (em).	1.2 ml/min	0.5-25 ng/ml	0.997	47
5	C18 column 250 mm × 4.6 mm	Methanol:0.02 m phosphate buffer: triethylamine (60:40:0.5, v/v/v)	168 nm	1.0 ml/min	50-150 mcg/ml	0.9970	48
6	Xterra RP C18, 250 × 4.6 mm, 5μ	Potassium dihydrogen orthophosphate Buffer and Acetonitrile (80:20, v/v)	230 nm	1.0 ml/min	25- 75 μg/ml	0.998	49
7	Zorbax Eclipse Plus C18 rapid resolution Column (4.6 × 100 mm, 3.5 μm)	72.5% acetate buffer pH 5.5 and 27.5% ethanol	315 nm	1.0 ml/min	2-28 μg/ ml	0.9999	50
8	C-18 Cosmosil packed column (5 C18- MS-II, 250 mm x 4.6 mm x 5.0 µm)	0.02 M phosphate buffer (pH 7.4), methanol and Acetonitrile (ACN) (40:50:10 v/v/v)	280 nm	-	0.5-80 μg/ml		51
9	C18 column (150 × 4.6 mm)	Dihydrogen orthophosphate buffer (pH 3.5 ± 0.05), acetonitrile and methanol in a ratio of (15:20:65 v/v)	225 nm	1.0 ml/min	80-160 μg/ml	0.998	52
10	Uptisphere ODB C18 column 250 mm × 4.6 mm, 5 μm	Phosphate buffer (0.005M, pH 3.67) and methanol (38:62)	270 nm	1.0 ml/min	50-200 μg/ml	0.9980	53
11	C18 (4.6 × 250 mm 3.5 µm)	Methanol: buffer (60:40% v/v)	270 nm	1.0 ml/min	200-400 μg/ml	0.999	54
12	Inertsil C8-3, 25 cm × 4.6-mm, 5 μ	Buffer: methanol: triethylamine (55:45:5, v/v/v). pH 2.50 ± 0.05	271 nm	1.0 ml/min	20-60 µg/ml	0.9999	55
13	Hypersil BDS (4.6 x 150 mm, 5μ)	Sodium dihydrogen ortho phosphate: Acetonitrile (30:70, v/v)	-	1.0 ml/min	20-60 μg/ml	-	56
14	Hypersil column (250 × 4.6 mm, 5 μm)	Acetonitrile and 0.025 M potassium dihydrogen phosphate buffer of pH 3.5 (80:20)	210 nm	1.0 ml/min	0.5-100 μg/ml	0.9998	57

ſ	15	Kromasil C18 (250 4.6	Methanol and buffer	268 nm	1.2	50-150	0.999	58
		mm, 5 (m) columns.	solution (40: 60, v/v)		ml/min	μg/ml		

Table 7: Rivastigmine HPTLC Methods.

Sr. No.	Drug Name	Plate	Mobile Phase	Linearity Range	Linearity R ²	Reference
1	Rivastigmine	20 cm × 10 cm	Benzene: acetone: ammonia (6.5:3:0.1, v/v/v)	55–720 ng/ spot	0.9986	59
2	Rivastigmine	10 cm × 20 cm	Chloroform—methanol (4:6, v/v)	200–1600 ng/spot	0.9916	60

Table 8: Galantamine HPTLC Methods.

Sr No.	Plate	Mobile Phase	Wavelength	Linearity Range	Linearity R ²	Reference
1	Silicagel G60F254	Chloroform: acetone: ethyl acetate: methanol (20:10:5:5 v/v/v/v)	UV detection at $\lambda = 282 \text{ nm}$,	1*10 ⁻³ — 3*10 ⁻² g/ml	0.995.	61

Table 9: Donepezil HPTLC Methods.

Sr No	Plate	M0bile Phase	Wavelength	Linearity range	Linearity R ²	Reference
1	Silica gel 60 F254 on aluminium sheet	Methanol: chloroform (8:2 vol./vol.) As mobile phase	254 nm	200-1000 ng/spot	0.998	62
2	Silica gel 60 F254 on aluminium sheet (20 × 10 cm)	Butanol-water- glacial acetic acid (5:4:1, vol./vol./v)	260 nm	50-1000 ng/spot	0.9908-0.9995	63

Table 10: Rivastigmine U.V. Spectrophotometric Methods.

Sr.	Method	Wavelength	Solvent	Linearity Range	Linearity R2	Reference
No.						
1	1. First method is a second derivative (D2)	1. 262 nm 2. 272 nm	 Distilled water Distilled water 	1.50–500 μg/ml 2. 50–500 μg/ml	-	64
	2. First derivative of the ratio spectra (DD1)					
2	Calibration curve	224 nm	Methanol	100-700 mg/ml	0.9996	65
3	1.zero order 2. First derivative 3.Direct absorbance measurement	1. 263.6nm 2. A.265.6nm B.272.8nm 3. A. 263.6nm B. 267.3nm C.270.2nm	1.Methanol: Water (60:40, v/v) 2.Methanol: Water (60:40, v/v) 3.Methanol: Water (60:40, v/v)	1. 0.2- 1mm 2. 0.2-1mm 3. 0.2-1mm	1. 0.999 2. A. 0.998 B. 0.999 3. A. 0.998 B. 0.998 C. 0.999	66
4	Calibration curve	224 nm	Methanol	100–500 μg/ml	0.99	67

Table 11: Galantamine U.V. spectroscopic Methods.

Sr	Method	Wavelength	Solvent	Linearity Range	Linearity R ²	Reference
No.						
1	Calibration curve method	214 nm	Distilled Water.	1.0–120.0 ng/ml	0.998	68
2	First order derivative spectroscopy	289 nm	Distilled Water.	20-100 μg/ml	0.999	69

Table 12: Donepezil U.V. Spectrophotometric Methods.

Sr No.	Method	Wavelength	Mobile Phase	Linearity Range	Linearity R2	Reference
1	Assay after solvent extraction spectrophotometric method of sample	410 nm	Phthalate buffer solution	2-14 μg/ml	0.9999	70
2	Calibration curve method	270.5 nm	pH 7.4 phosphate buffer	2-20 mg/ml	0.999	71
3	Calibration curve method	231 nm	Mixt. Of Acetonitrile and water	4-20 μg/ml	0.9983	72
4	Comparison of calibration curve method of sample with ion pair complexation reaction	420, 413, 415 and 409 nm for DNP- BCG, DNP-BTB, DNPBPB and DNP-BCP complexes,	Dichloromethane	1.0-12 μg/ml	0.999	73
5	Colorimetric method and calibration curve method	Method A and method B λmax was 231 and 454 nm, resp.	2,4-dinitrophenyl hydrazine in dil. Sulfuric acid.	5-40 and 10-60 µg/ml for method A and B, resp.	0.999	74
6	Calibration curve method.	547 nm	Potassium permanganate in alkaline. Medium.	2 - 35 μg/ml	0.997	75
7	Assay after solvent extraction spectrophotometric method	411 nm	Chloroform	2-12 μg/ml	0.999	76

Table 13: Rivastigmine HPLC MS/MS Methods.

Sr. No.	Column	Mobile Phase	Linearity Range	Flow Rate	Linearity R ²	Reference
1	Surveyer HPLC with Betabasic-8 (5.0 m, 100 mm × 4.6 mm	0.1% formic acid in acetonitrile and 0.1% formic acid in water (70:30, v/v)	0.2–20.0 ng/m	1.0 ml/min	0.9988	77
2	3-mm Purospher compounds were extracted from plasma using MTBE Star RP-18 (Merck) column (55×2 mm I.D.	Methanol– 0.02 M ammonium acetate (55:45, v/v)	0.200–30.0 ng/ml	0.2 ml/min	0.9998	78
3	Gemini C18 column (15×2.0 mm I.D., particle size 5 mm; Phenomenex, Torrance, CA, USA)	10 m ammonium hydroxide/methanol (50:50, v/v)	0.25 to 50.0 ng/ml	0.2 ml/min	0.99	79
4	Nucleosil CC-125/2 C18 reversed-phase column (Macherey & Nagel	Acetonitrile 80% in H2O (v/v) containing 0.1% formic acid	10–100 pmol/ml or pmol/g	0.35 ml/min	0.995	80

Table 14: Galantamine HPLC-MS/MS Method.

Sr No.	Column	Mobile Phase	Linearity Range	Flow Rate	Linearity R ²	Reference
1	Waters (Milford, MA, USA) Symmetry Shield 3.5 18 mm (4.6 mm I.D.350 mm).	0.01 M ammonium acetate–acetonitrile (85:15, v/v)	1.00–500 ng/ml	1.5 ml/min	-	81
2	YMC Hydrosphere C18 (50 2 mm i.d., 3 mm; YMC Co., Japan)	Acetonitrile – 0.01M ammonium acetate (95:5, v/v)	4-300 ng/ml	0.2 ml/min	0.996	82
3	A reverse-phase C18 column	0.03% formic acid—acetonitrile (20:80, v/v),	0.5-100 ng/ml	1.5 ml/min	0.99	83

Table 15: Donepezil HPLC-MS/MS Methods.

Sr	Column	Mobile Phase	Linearity	Flow Rate	Linearity	Reference
No.			Range		\mathbb{R}^2	
1	RP-Amide column	0.05 M aq. formic acid and	0.1-1000	0.4 ml/min	0.999	84
	$(75 \text{ mm} \times 2.1 \text{ mm},$	acetonitrile	ng/ml			
	2.7 μm)					
2	CHIRALCEL OJ-	n-hexane: n-propanol: diethyl	0.051-7.596	-	≥ 0.99	85
	H (250 mm*4.6	amine (60: 40: 0.1, V/V/V)	ng/ml			
	mm, 5µm)					

Table 16: Rivastigmine UPLC Method.

Sr. No.	Column	Mobile Phase	Linearity Range	Flow Rate	Linearity R ²	Reference
1	UPLC BEH Phenyl (100 mm 2.1 mm, 1.7 lm)	A) acetonitrile-Disodium hydrogen orthophosphate (pH 7.5; 0.01 M)-Triethylamine (10:90:0.1, v/v/v) B) acetonitrile-water (80:20, v/v)	25–75 mg/ml	0.4 ml/min	0.999	86

Table 17: Galantamine UPLC Methods.

Sr No.	Column	Mobile Phase	Linearity Range	Flow Rate	Linearity R ²	Reference
1	Shim pack XR ODS-II length 100 mm, internal diameter 3 mm with 2.2 lm particle size	Water and methanol in the ratio of 1:1 (v/v)	-	0.5 ml/min	0.999	87
2	BEH C18 column (150 mm × 2.1 mm, 1.7 μm	0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B)	10 μg ml-1 - 2000 ng ml-1	0.4 ml/min	0.9968	88
3	Acquity UPLC BEH C18 column	Solution-A acetonitrile- water (5:95, v/v) and solution-B acetonitrile water (90:10, v/v), which both contain 2 mm ammonium formate and 0.2% formic acid	2–2000 ng/ml	0.6 ml/min.	0.999	89
4	Reverse phase column (BEH C18 2.1 mm × 50 mm; 1.7 m) w	(buffer–acetonitrile 80:20, v/v),	0.2–50 ng/ml	0.4 ml/min	-	90

Table 18: Donepezil UPLC Methods.

Sr. No	Column	Mobile Phase	Linearity Range	Flow Rate	Linearity R ²	Reference
1	BEH C18 column	acetonitrile and 0.3% formic acid in water.	0.2-20 ng/ml	0.65 ml/min	0.99	91
2	C18 column (50 2.1 mm; 1.9 mm) (Hypersil Gold, Thermo Fisher, Waltham, MA)	water, acetonitrile, and perchloric acid (65:35:0.1, v/v/v)	2–14 μg/ml	0.4 ml/min	0.9995	92

Conclusion:

A thorough survey on various spectrophotometric and chromatographic methods revealed for the assurance of three acetylcholinesterase inhibitors viz. Rivastigmine, Galantamine, Donepezil in pure bulk drug, pharmaceutical dosage forms such as tablets, capsules, transdermal patches and biological fluids has been introduced. Some LC- MS/MS methods alms great sensitivity and short investigation time have likewise been created and approved for validated quantification of cholinesterase inhibitors in human plasma. The investigation of the accessible information uncovered that HPLC was extensively utilized for the quantitative assessment of cholinesterase inhibitors since particularity of HPLC method is exemplary and adequate precision is also feasible. In any case, it must be affirmed that the confound specificity, precision and accuracy are feasible just if extensive system suitability tests are done prior to the HPLC examination. We suggest the HPLC-MS/MS technique for the assurance of cholinesterase inhibitors since it associates the HPLC separation capability with MS sensitivity and selectivity that permits the clear-cut distinguishing of cholinesterase inhibitors and their metabolites. For assurance of cholinesterase inhibitors in pharmaceutical dosage form, HPLC with UV and PDA detection can be utilized in light of precision and accuracy in the outcomes and minimal expense when contrasted with further advanced detection techniques.

REFERENCES

- 1. Farlow, M.R. 2003. Clinical Pharmacokinetics of Galantamine. Clin Pharmacokinet 42, 1383–1392.
- 2. Grossberg G. T. 2003. Cholinesterase Inhibitors for The Treatment of Alzheimer's Disease: Getting on And Staying On. Current Therapeutic Research, Clinical and Experimental, experimental vol. 64,4 (2003): 216-35
- 3. Hwang J, Hwang H, Lee HW, Suk K. 2010 Jun. Microglia signalling as a target of donepezil. Neuropharmacology. 58(7):1122-9
- 4. KD Tripathi, Essentials of Medical Pharmacology. Section no. 2 Drugs Acting on Autonomic Nervous system; 6. Cholinergic System and Drugs page no 83-84. Section no. 7 - Drugs Acting on Central Nervous system; 33.CNS stimulant and Cognitive Enhancer. Page no. 439-440 Fifth Edition.
- 5. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. 2016. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 14(1):101-115.
- 6. Akk G, Steinbach JH. 2005. Galantamine activates muscle-type nicotinic acetylcholine receptors without binding to the acetylcholine-binding site. J Neurosci. 2005;25(8):1992-2001.
- 7. Jann MW, Shirley KL, Small GW. 2002. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet; 41(10):719-739.
- 8. Perju-dumbrava, Lacramioara & Fischer, Teodor & Medrea, Razvan. 2009. Use of a rivastigmine transdermic patch in Alzheimer's disease and Parkinson's disease dementia. Romanian Journal of Neurology/ Revista Romana de Neurologie. 8. 10.37897/RJN.2009.1.5.
- 9. Hao XY, Ding L, Li LM, Bian XJ, Zhang SQ. 2003. MAY. Bioequivalence of donepezil capsule and tablet in human]. Yao Xue Xu Bao; 38(5):392-4. Chinese. PMID: 12958848.
- 10. S. Alexandar, Rohini Diwedi, T. Ashok and J. N. Chandrasekhar. 2011. A Validated rp-hplc Method for Estimation of Rivastigmine in Pharmaceutical Formulations, Scholars Research Library der Pharmacia Lettre, 3(3):421-426
- 11. Amini, Hossein & Ahmadiani, Alhassan. 2010. High-Performance Liquid Chromatographic Determination of Rivastigmine in Human Plasma for Application in Pharmacokinetic Studies. Iranian journal of pharmaceutical research: IJPR. 9. 115-21.
- 12. Avijit choudhury, K. Vasantakumar Pai, Suddhasattya Dey, Rajesh J. Mandade. 2011. rp-hplc method for the estimation of rivastigmine in bulk and in dosage forms, avijit choudhary et al. / journal of pharmacy research, 4(4), 1007-1009.
- 13. Arumugam, Karthik, et al. 2008." A Study of Rivastigmine Liposomes for Delivery into The Brain Through the Intranasal Route." Acta Pharmaceutica, Vol. 58, no. 3, pp. 287-297.
- 14. Rishi kapil, Sanju Dhawan, Sarwar Beg, and Bhupinder Singh. 2012. Buccoadhesive Films for Once-A-Day Administration of Rivastigmine: Systematic Formulation Development and Pharmacokinetic Evaluation, Drug Development and Industrial Pharmacy; Early Online: 1–15.
- 15. Ce Simona, Maria Inês Amarob, Anne Marie Healyb, Lucio Mendes Cabrala, Valeria Pereira de Sousaa. 2016. Comparative Evaluation of Rivastigmine Permeation from A Transdermal System in The Franz Cell Using Synthetic Membranes and Pig Ear Skin With In Vivo-In Vitro Correlation, A. Simon Et Al. / International Journal of Pharmaceutics 512 (2016) 234-241.

- 16. Karthik, A., Subramanian, G. S., Surulivelrajan, M., Ranjithkumar, A., & Kamat, S. B. 2008. Fluorimetric Determination of Rivastigmine In Rat Plasma by A Reverse Phase High Performance Liquid Chromatographic Method: Application to A Pharmacokinetic Study. Arzneimittel-Forschung/Drug Research, 58(5), 205-210.
- 17. Delivery Hamed Mohamadpour, Amir Azadi, Kobra Kostamizadeh, Sina Andalib, Mohammad Reza Saghatchi Zanjani, and Mehrdad Hamidi. 2020. Preparation, Optimization, And Evaluation of Methoxy Poly (Ethylene Glycol)-Co-Poly(E-Caprolactone) Nanoparticles Loaded by Rivastigmine For Brain, Acs Chem. Neurosci. 11, 783–795
- 18. K. Radhakrishnan, C. Karuppasamy, K. Sabarikumar, P. Varatharajan, K. Manikandan, R. Mailvelan. 2012. Method Development and Partial Validation of The Rivastigmine Drug in Bulk Dosage Form by Rp-Hplc, Radhakrishnan k. Et al. / International Journal of Pharmacy & Therapeutics, 3(1) 73-77.
- 19. M.k. Srinivasua, Mallikarjuna Raoa, Shyam Sundar Reddya. Rajeneder Kumar. Chandrasekharc, pradeep k. Mohakhudd. 2005. A Validated Chiral Liquid Chromatographic Method for The Enantiomeric Separation of Rivastigmine Hydrogen Tartarate, A Cholinesterase Inhibitor, Journal of Pharmaceutical and Biomedical Analysis 38 (2005) 320–325.
- 20. Brijesh Shah & Dignesh Khunt & Manju Misra & Harish Padh. 2017. Formulation and In-Vivo Pharmacokinetic Consideration of Intranasal Microemulsion And Mucoadhesive Microemulsion Of Rivastigmine For Brain Targeting, Part of Springer Nature.
- 21. Mohsen Sadeghia, Fariba Ganjia, Seyyed Mojtaba Maghizadehb and Bahram Daraeic. 2016. Preparation and Characterization of Rivastigmine Transdermal Patch Based on Chitosan Microparticles, Iranian Journal of Pharmaceutical Research, 15 (3): 283-294.
- 22. Francesca Cerbai, Maria Grazia Giovannini, Claudia Melani, Albert Enz, Giancarlo Pepeu, n1 phenethyl-norcymserine. 2007. A Selective Butyrylcholinesterase Inhibitor, Increases Acetylcholine Release in Rat Cerebral Cortex: A Comparison with Donepezil and Rivastigmine, European Journal of Pharmacology 572 (2007) 142–150.
- 23. Shaik Firdose, P Prashanth, V. Srikalyani, S. Madhavi and Buchi N. Nalluri. 2013. Analysis of Rivastigmine In In Vitro Transdermal Permeation Studies by Rp-Hplc-Pda Method, Chem. Pharm. Re, 5(11):436-442.
- 24. Maria Petrocheilou, Victoria Samanidou, Leda Kovatsi, Magda Tsolaki, Ioannis Papadoyannis. June 2017. A Simple and Direct Hplc-Dad Method for The Simultaneous Determination of Galantamine, Donepezil and Rivastigmine In Cerebrospinal Fluid, Blood Serum and Urine, Journal of Applied Bioanalysis, p. 59-69.
- 25. R. Mullangi, A. Ranjithkumar, K. Arumugam, S.R. Mallayasamy, S. Ganesan, L. Jamadar, N. Udupa, M.R. Chamallamudi. 2011. High Performance Liquid Chromatographic Fluorescence Detection Method for the Quantification of Rivastigmine in Rat Plasma and Brain: Application to Preclinical Pharmacokinetic Studies in Rats. Journal of Young Pharmacists, Volume 3, Issue 4, Pages 315-321, ISSN 0975-1483.
- 26. Mohammad H. Semreen & Hassan Y. Aboul-enein. 2010. Experimental Design Strategies in Lc Method Development and In Robustness Testing for Reversible Cholinesterase Inhibitor Rivastigmine In Pharmaceutical Formulation, Journal of Liquid Chromatography & Related Technologies, 33:191–201.
- 27. Dignesh Khunt, Suryanarayana Polaka, Meenakshee Shrivas, Manju Misra. 2020. Biodistribution And Amyloid Beta Induced Cell Line Toxicity Study of Intranasal Rivastigmine Microemulsion Enriched with Fish Oil and Butter Oil, Journal of Drug Delivery Science and Technology 57 (2020) 101661.
- 28. Elif özdemir, Sevgi Tatar ulu. 2017. Highly Sensitive Hplc Method for The Determination of Galantamine In Human Plasma and Urine Through Derivatization with Dansyl Chloride Using Fluorescence Detector, Luminescence;1–5.
- 29. Vadde Ravinder & S. Ashok, V. S. Prasad, G. Balaswamy, Ravindra Kumar, Vijaya Bhaskar. 2008. A Validated Chiral Lc Method for The Enantiomeric Separation of Galantamine, Chromatographia. 67, February, 331–334.
- 30. Ivan Svinyarov, Rozalina Keremedchieva & Milen, G. Bogdanov, Ionic Liquid-Supported Solid-Liquid Extraction of Bioactive Alkaloids. 2015. New Hplc Method for Quantitative Determination of Galantamine In Leucojum Aestivum L. (Amaryllidaceae), Separation Science: Theory and Practice, Volume 51 <u>Issue 15-16</u>, Pages 2691-2699.
- 31. Jana Malakov, Milan Nobilis, Zbynek Svoboda, Miroslav Lisa, Michal Holcapek, Jaroslav Kvetina, Jiri Klimes, Vladim Tr Palicka. 2007. High-Performance Liquid Chromatographic Method with Uv Photodiode-Array, Fluorescence and Mass Spectrometric Detection for Simultaneous Determination of Galantamine and Its Phase I Metabolites in Biological Samples, Journal of Chromatography B, 853 (2007) 265–274.
- 32. Özlem Bahadir Acikara, Betül Sever Yilma, Dilhun Yazgan, Gülçin Saltan Işcan. 2019. Quantification of Galantamine In Sternbergia Species by High Performance Liquid Chromatography, Turk J Pharm Sci;16(1):32-36.
- 33. Misra S, Chopra K, Sinha VR, Medhi B. 2016 May. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv; 23(4):1434-43
- 34. Dobrina Doncheva Tsvetkova, Danka Petrova Obreshkova 2018. Validation of Hplc Method for Simultaneous Determination of Galantamine Hydrobromide/Pymadine, International Journal of Pharmaceutical Research & Allied Sciences, 7(3):233-247.
- 35. Maria Petrocheilou, Victoria Samanidou, Leda Kovatsi, Magda Tsolaki, Ioannis Papadoyannis. June 2017. A Simple and Direct Hplc-Dad Method for The Simultaneous Determination of Galantamine, Donepezil and Rivastigmine In Cerebrospinal Fluid, Blood Serum and Urine, Journal of Applied Bioanalysis, p. 59-69.
- 36. Li-jun Zhang, Xiao-ling Fang, Xue-ning Li, Qing-song Wang, Li-Mei Han, Zhi-wen Zhang and Xian-yi Sha. December 2006. Drug Development and Industrial Pharmacy Pharmacokinetics and Bioequivalence Studies of Galantamine Hydrobromide Dispersible Tablet in Healthy Male Chinese Volunteers, Drug Development and Industrial Pharmacy, 33:335–340.
- 37. Patel Krupesh, Patel Amit V, Patel Vishal.J, Dave Jayant, Patel Chhaganbhai. 2010. Quantitative Determination of Galantamine Hydrobromide In Pharmaceutical Dosage Form by Rp-High Performance Liquid Chromatography, J. Chem. Pharm. Res, 2(2): 36-43.

- 38. Chun-woong Parka, Dao-danh Sona, Ju-young Kima, Tack-oon Oha, Jung-myung Haa, Yun-seok Rheec, Eun-seok Parka. 2012. Investigation of Formulation Factors Affecting In Vitro And In Vivo Characteristics of a Galantamine Transdermal System, C.-W. Park Et Al. / International Journal of Pharmaceutics 436 (2012) 32–40.
- 39. A. Petruczynik, J. Misiurek, T. Tuzimski, R. Uszyński, G. Szymczak, M. Chernetskyy & M. Waksmundzka-Hajnos. 2016. Comparison of different HPLC systems for analysis of galantamine and lycorine in various species of Amaryllidaceae family, Journal of Liquid Chromatography & Related Technologies, 39:12, 574-579,
- 40. Dobrina Tsvetkova, Stefka Ivanova. Apr-Jun 2019. Investigation of Hplc Behaviour and System Suitability Estimation for Combination Galantamine Hydrobromide and Pymadine, Journal of Advanced Pharmacy Education & Research, Vol 9 | Issue 2, page no.82-88
- 41. Özlem Bahadir Acikara, Betül Sever Vilmaz, Dilhun Yazgan. 2019 Mar. Quantification of Galantamine In Sternbergia Species by High Performance Liquid Chromatography, Turk J Pharm Sci ;16(1):32-36.
- 42. Hongwei Zhaoa, Ling Suna, Huanhuan Chena, Lili Xianga, Dongying Chena. 5 September 2020. Intrinsic Stability Study Of L-A-Glycerylphosphorylcholine With Hplc Method Development and Validation, Analysis volume, 113468.
- 43. María j. Culzoni, Ricardo Q. Aucelio, Graciela M. Escandar. 2012. High-Performance Liquid Chromatography with Fast-Scanning Fluorescence Detection and Multivariate Curve Resolution for The Efficient Determination of Galantamine And Its Main Metabolites in Serum, Analytica Chimica Acta 740 (2012) 27–35.
- 44. Ahmad khan, Reza; Nazari, Abdolrahman; Amini, Mohsen; Souri, Effat. 2014. A Validated Hplc Method for The Determination of Donepezil in Human Plasma After Derivatization With 9- Fluorenylmethyl Chloroformate, Journal of Chinese Pharmaceutical Sciences, 23(2), 118-123.
- 45. Senthil Kumar, Solairaj, Thangathirupathi. 2011. Analytical Method Development and Validation of Donepezil Hydrochloride Tablets by Rp-Hplc, International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 62-65.
- 46. Anbarasi, Prasanth M, S. K.; Senthil Kumar. 2011. Analytical Method Development and Validation of Donepezil Hydrochloride Tablets by Rp-Hplc And Uv, International Journal of Pharmacy and Technology, 3(2), 1988-2000.
- 47. Yildirim, Sercan; Ulas Colak, Nevin Yasar, Ahmet. 2018. Application of Dispersive Liquid-Liquid Microextraction For the Determination of Donepezil in Urine by Hplc Using A Core-Shell Column, Journal of Liquid Chromatography & Related Technologies, 41(2), 66-72.
- 48. S. Dharmaraj Santhosam, S. Kannan, Lakshmi Devi. 2010. Development and Validation of Rp- Hplc Method for Estimation of Donepezil hcl From Bulk and Marketed Dosage Forms, J. Chem. Pharm. Res, 2(6):62-67.
- 49. Basavaraju, Ishaq, B. Mohammed, Abdul Ahad, Hindustan, Prakash, Vanitha. 2015. Development and Validation of New Analytical Method for The Determination of Donepezil Using Rp-Hplc, Indo American Journal of Pharmaceutical Sciences, 2(8), 1167-1172.
- 50. Korany, Mohamed, Mahgoub, Hoda, Haggag, Rim S, Ragab, Marwa. A, Elmallah, Osama A. 2017. Development of A Green Stability-Indicating Hplc-Dad Method for The Determination of Donepezil Hydrochloride in The Presence of Its Related Substance and Degradation Products, Journal of Liquid Chromatography & Related Technologies, 40(18), 930-942.
- 51. Yasir, Mohd, Singh Sara, Udai V, Chauhan, Iti Bisht, Dheeraj; Puri, Dinesh; Maurya, Jayendra. 2020. Donepezil Base: Physicochemical Characterization, Hplc Method Development, Validation and Its Application for The Determination of Shelf Life in Developed Solid Lipid Nanoparticles, Current Nanomedicine, 10(1), 48-62.
- 52. Nataraj, K. S.; Babu, T. Venu; Duza, M. Badrud. 2011. Estimation of Donepezil in Bulk and Pharmaceutical Dosage Forms by Rp-Hplc, Journal of Chemical and Pharmaceutical Sciences, 4(2), 79-81.
- 53. Kafkala, Stella; Matthaiou, Stella; Alexaki, Pandora; Abatzis, Morfis; Bartzeliotis, Antonios; Katsiabani, Maria. 2008. New Gradient High-Performance Liquid Chromatography Method for Determination of Donepezil Hydrochloride Assay and Impurities Content in Oral Pharmaceutical Formulation, Journal of Chromatography A. 1189(1-2), 392-397.
- 54. Sudheer Babu; Nagaraju, K. 2012. Rp-Hplc Method Development and Validation of Donepezil Hydrochloride, International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 213-216.
- 55. Barot, Tushar G.; Patel P. K. 2009. Rp-Hplc Method for The Estimation of Donepezil Hydrochloride Dosage Form, E-Journal of Chemistry, 6(2), 594-600.
- 56. Amena, Syeda Noorain; Rizwan, S. H. 2015. Stability Indicating Analytical Method Development and Validation of Memantine Hcl And Donepezil Hcl Using Rp-Hplc, International Journal of Pharmacy and Pharmaceutical Sciences, 7(11), 204-210.
- 57. Saleh, Hanna M.; Ragab, Gamal H.; Amin, Alaa S.; Kamel, Enas S. 2016. Stability-Indicating Hplc Method for Determination of Donepezil Hydrochloride in Pure and In Tablet Dosage Forms, Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry, 4(1), 14-24.
- 58. Singh, B. K.; Srivastava, R. K.; Kumar, S. Senthil; Dutta, P. K. 2012. Stability-Indicative Hplc Determination of Donepezil Hydrochloride in Tablet Dosage Form, Pharmaceutical Chemistry Journal, 45(12), 766-770.
- 59. Fardous A. Mohameda, Pakinaz Y. Khashabaa, B, Mohamed M. El-Wekila, Reem Y. Shahin. 2019. Spectro densitometric Determination of Rivastigmine After Vortex Assisted Magnetic Solid Phase Extraction, Microchemical Journal 147 (2019) 764–774.
- 60. Arumugam Karthik, Ganesa Sundararajan Subramanian, Prashant Musmade, Averineni Ranjithkumar, Mallayasamy Surulivelrajan, And Nayanabhirama Udupa. 2007. Stability-Indicating Hptlc Determination of Rivastigmine In the Bulk Drug and In Pharmaceutical Dosage Forms, Journal of Planar Chromatography 20 (2007) 6, 457–461.
- 61. Dobrina Tsvetkova1, Stefka Ivanova. Oct-Dec 2018. Validation Parameters of Densitometric Method for Simultaneous Determination of Galantamine Hydrobromide And Pymadine, Journal of Advanced Pharmacy Education & Research, Vol 8 | Issue 4.08-19.

- 62. Jagadeeswaran, Murugesan; Natesan, Gopal; Murugananthan, Gandhimathi; Rajagounden, Rajavel; Mani, Ganesh; Thangavel, Sivakumar. 2011. A Validated Hptlc Method for The Estimation of Donepezil Hcl In Bulk and Its Tablet Dosage Form, Eurasian Journal of Analytical Chemistry, 6(1), 78-83.
- 63. Ali, J.; Ali, M.; Ahmad, S.; Bhavna, M. 2009. Stability-Indicating Hp Tlc Method for Determination of Donepezil Hydrochloride in Bulk Drug and Pharmaceutical Dosage Form, Chemia Analityczna (Warsaw, Poland), 54(6), 1501-1516.
- 64. Aissa Y. Salem, An Amira M. El-Kosasy, B Mohamed G. El-Bardicya And Mohamed K. Abd El-Rahmana. 2010. Spectrophotometric and Spectrodensitometric Methods for The Determination of Rivastigmine Hydrogen Tartrate in Presence of Its Degradation Product, Drug Test. Analysis, 2, 225–233.
- 65. Shah Bm, Misra M, Shishoo Cj, Padh H. 2015. Nose to Brain Microemulsion-Based Drug Delivery System of Rivastigmine: Formulation and Ex-Vivo Characterization. Drug Deliv. 22(7):918-30.
- 66. Dinc E. 1999 Dec. A Comparative Study of The Ratio Spectra Derivative Spectrophotometry, Vierordt's Method and High-Performance Liquid Chromatography Applied to The Simultaneous Analysis of Caffeine and Paracetamol in Tablets. J Pharm Biomed Anal. 21(4):723-30
- 67. Dignesh Khunt, Suryanarayana Polaka, Meenakshee Shrivas, Manju Misra. 2020. Biodistribution And Amyloid Beta Induced Cell Line Toxicity Study of Intranasal Rivastigmine Microemulsion Enriched with Fish Oil and Butter Oil, Journal of Drug Delivery Science and Technology 57 (2020) 101661.
- 68. Hsieh Yh, Yang Yh, Yeh Hh, Lin Pc, Chen Sh. 2009 Feb. Simultaneous Determination of Galantamine, Rivastigmine And Nap 226-90 In Plasma by Mekc And Its Application in Alzheimer's Disease. Electrophoresis, 30(4):644-53.
- 69. Patel Hitesh N., Patel Amit V., Patel Vishal J., Dave Jayant B. And Patel Chhaganbhai N. 2010. Uv-Spectrophotometric Method Development and Validation for Estimation of Galantamine Hydrobromide In Tablet Dosage Form, J. Chem. Pharm. Res, 2(2): 44-49.
- 70. Shirwaikar, Arun & Devi, Susela & Rajagopal, P.L. & Ss, Kiron & Sreejith, K.R. 2014. Development and Validation of Analytical Method for Determination of Donepezil Hydrochloride in Pure and Dosage Forms. Asian Journal of Pharmaceutical and Clinical Research. 7. 149-153.
- 71. Yasir, M., And U. Sara. Sept. 2014. "Development of UV Spectrophotometric Method for The Analysis of Acetylcholinesterase Inhibitor". International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 6, No. 9, Pp. 128-
- 72. Dusi, Sharmila; Swaminathan. 2019. Method Development and Validation of Donepezil Hydrochloride by Using Uv Spectrophotometric Method, International Journal of Pharmaceutical Research and Bio-Science, 8(3), 1-9.
- 73. El Sheikh, Ragaa; Gouda. Ayman; Solima Hanan. 2015. Sensitive Spectrophotometric Determination of Acetylcholinestrase Inhibitor Donepezil Hydrochloride in Pure Form and Pharmaceutical Formulations Using Sulphonphethalin Dyes, International Journal of Pharmacy and Pharmaceutical Sciences, 7(8), 274-281.
- 74. J.N. Sangshetti, P.R. Mahaparale, S. Paramane And D.B. Shinde. 2008. Spectrophotometric Estimation of Donepezil Hydrochloride in Bulk and Tablet Formulation. Trends in Applied Sciences Research, 3: 109-112.
- 75. Babu, I. & Raju, K. 2012. Rp-Hplc Method Development and Validation of Donepezil Hydrochloride. International Journal of Pharmacy and Pharmaceutical Sciences. 4. 213-216.
- 76. Sreejith, K. R.; Siju, E. N.; Hariraj, N. 2010. Spectrophotometric Method for The Analysis of Donepezil Hydrochloride, Indian Pharmacist (New Delhi, India), 9(6), 67-70.
- 77. Jignesh Bhatt, Gunta Subbaiah, Sandeep Kambli, Bhavin Shah, Samita Nigam, Mehul Patel, Ashish Saxena, Ashok Baliga, Hetal Parekh, Gunvat Yadav. 2003. A Rapid and Sensitive Liquid Chromatography-Tandem Mass Spectrometry (Lc-Ms/Ms) Method for The Estimation of Rivastigmine In Human Plasma, Journal of Chromatography B, 852, 115-
- 78. F. Pommier, R. Frigola. 2003. Quantitative Determination of Rivastigmine And Its Major Metabolite in Human Plasma by Liquid Chromatography with Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry, Journal of Chromatography B, 784, 301–313
- 79. Suzanne V. Frankfort, Marie T Ouwehand, Maria J. Van Maanen, Hilde Rosing, Linda R. Tulner And Jos H. Beijnen. 2006. A Simple and Sensitive Assay for The Quantitative Analysis of Rivastigmine And Its Metabolite Nap 226-90 In Human Edta Plasma Using Coupled Liquid Chromatography and Tandem Mass Spectrometry, Rapid Commun. Mass Spectrom. 20: 3330-3336.
- 80. Enz A, Chappuis A, Dattler A. 2004 Apr. A Simple, Rapid and Sensitive Method for Simultaneous Determination of Rivastigmine And Its Major Metabolite Nap 226-90 In Rat Brain and Plasma by Reversed-Phase Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometry. Biomed Chromatogr. 18(3):160-6.
- 81. T. Verhaeghe, Diels, R. De Vries, M. De Meulder, J. De Jong. 2003. Development and Validation of a Liquid Chromatographic-Tandem Mass Spectrometric Method for The Determination of Galantamine In Human Heparinised Plasma, Journal of Chromatography B, 789,337–346.
- 82. Park Ys, Kim Sh, Kim Sy, Kim Yh, Lee Mh, Yang Sc, Shaw Lm, Kang Js. 2012 Oct. Quantification of Galantamine In Human Plasma by Validated Liquid Chromatography-Tandem Mass Spectrometry Using Glimepride As an Internal Standard: Application to Bioavailability Studies In 32 Healthy Korean Subjects. J Chromatogr Sci.;50(9):803-9.
- 83. Nirogi Rv, Kandikere Vn, Mudigonda K, Maurya S. 2007 Feb. Quantitative Determination of Galantamine In Human Plasma by Sensitive Liquid Chromatography-Tandem Mass Spectrometry Using Loratadine As an Internal Standard. J Chromatogr Sci.;45(2):97-103.

- 84. Mzik M, Korabecny J, Nepovimova E, Voříšek V, Palička V, Kuca K, Zdarova Karasova J. 2016. An Hplc-Ms Method for The Quantification of New Acetylcholinesterase Inhibitor Pc 48 (7-Meota-Donepezil Like Compound) In Rat Plasma: Application to A Pharmacokinetic Study. J Chromatogr B Analyt Technol Biomed Life Sci. May 1; 1020:85-9.
- 85. Yu, Qin; Xiang, Jin; Shi, Ling-Zi; Liang, Mao-Zhi; Qin, Yong-Ping; Nan, Feng/ 2012. Determination of Donepezil Enantiomer in Human Plasma by Normal-Hplc-Ms/Ms, Sichuan Daxue Xuebao, Yixueban, 43(5), 779-781, 785.
- 86. T. Satyanarayana Raju, Kalyanaraman, V. Venkat Reddy, And P. Yadagiri Swamy. 2012. Development and Validation of An Uplc Method for The Rapid Separation of Positional Isomers and Potential Impurities of Rivastigmine Hydrogen Tartrate in Drug Substance and Drug Product, Journal of Liquid Chromatography & Related Technologies, 35:896–911.
- 87. Deshpande, G.R., Roy, A.K., Rao, N.S. Et Al. 2011. Rapid Screening of Volatile Ion-Pair Reagents Using Uhplc And Robust Analytical Method Development Using Doe for An Acetyl Cholinesterase Inhibitor: Galantamine Hbr. Chromatographia 73, 639-648.
- 88. José R. De Paiva, Q. Souza, A, C Rita De, A. Pereira, Paulo R. V. Ribeiro, Guilherme Zocolo, B Edy, De Brito, Otília L. Pessoa And Kirley M. Canuto. 2019. Development and Validation of a Uplc-Esi-Ms Method for Quantitation of The Anti-Alzheimer Drug Galantamine And Other Amaryllidaceae Alkaloids in Plants, J. Braz. Chem. Soc., Vol. 00, No. 00, 1-8.
- 89. Jiang Wanga, Naresh Pavuralaa, Xiaoming Xua, Yellela S.R. Krishnaiahb, Patrick J. Faustino, Development and Validation of a Uplc-Ms Method for The Determination of Galantamine in Guinea Pig Plasma and its Application to a Pre-Clinical Bioavailability Study of Novel Galantamine Formulations,
- 90. Muriel Noetzli, Nicolas Ansermot, Maria Dobrinas, Chin B. Eapa. 2012. Simultaneous Determination of Antidementia Drugs in Human Plasma: Procedure Transfer from Hplc-Ms to Uplc-Ms/Ms, Journal of Pharmaceutical and Biomedical Analysis 16-25
- 91. Sui, Ting-Ting; Huang, Xiu-Ying; Yang, Xue-Xin; Un Lu. 2016. Determination of Donepezil in Beagle Dog Plasma by Uplc-Ms/Ms and its Application to Pharmacokinetic Study, Shenyang Yaoke Daxue Xuebao 33(2), 151-157.
- 92. De Campos, Debora Priscila; Silva-Barcellos, Neila Marcia; Marinho, Flavia Dias Marques; Barbosa, Guilherme, Xavier; Lana, Victoria Luiza Vieira Vidigal; De Souza, Jacqueline. 2020. A Sustainable Uplc-Uv Method for Quantification of Donepezil Hydrochloride in Biorelevant Media Applied to Dissolution Profile Comparison, From Drug Development and Industrial Pharmacy 46(10), 1578-1588.