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Abstract : A new and efficient method has been developed for the reduction of aromatic and heterocyclic nitro compounds with 

hydrazine hydrate and sodium acetate in methanol. In this method, the reduction is chemoselect ive in the presence of 

different  funct ional groups and the process has not used heavy metals, corrosive acids, pyrophoric reagents. The reduction 

products were purified using column chromatography and they were characterized using 1H NMR and mass spectroscopy. 
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I. INTRODUCTION 

The reduction of nitroarenes and nitroheterocycles to corresponding anilines and heterocyclic amines represents one of the most 

significant reactions in organic chemistry. The industrial importance of anilines is high demand for those  pharmaceuticals, polymers 

[1], polyurethanes synthesis [2], agrochemical production [3], coloring agents [4], rubber materials [5], dyes and other industrial items as 

antioxidants.  Alkylation of ammonia [6], reductive amination [7], reduction of azides [8], amides [9], nitriles [10], or nitro compounds 

are all used to make these amines. Standard procedures such as hydrogenation [11], electrochemistry [12], electron transfer [13] and 

hydrogen transfer conditions [14] are used to decrease nitro precursors. This is because the nitro group rapidly deactivates the 

electrophilic aromatic substitution of benzene ring.    

Some n - heterocyclic compounds are intentionally sprayed into the environment as pesticides, and others have been 

released into the environment due to improper handling or storage procedures. Reduction of nitro heterocyclics to their 

corresponding amine groups is a fundamental conversion in the pharmaceutical industry, for the synthesis of important metabolites 

and active pharmaceutical components. In most of these methods, nitro reduction is carried out by catalytic hydrogenation [11], Iron 

in acidic media [15], stannous chloride in acidic media [16] and using heavy metals like Iron [17] and Zinc [18].  Many of these harsh 

and strongly acidic conditions can cause side reactions, when the molecule contains other sensitive functionalities. By-products 

of such condition reactions cause high environmental pollution [19].  

Among the reductions, Bechamp reduction [20] is the oldest and most widely used approach, with a history of over 150 

years. The first reduction of nitro functions to organic compounds by iron was described by Bechamp in 1854. The Bechamp process 

is still employed in aniline plants because it provides access to colored iron oxide pigments as by-products. Raney nickel [21] is the 

most pyrophoric, toxic and inconvenient to handle highly flammable hydrogen gas. 

Another common method is reduction of aryl nitro compounds with hydrazine hydrate. The reduction of nitro groups-

containing aromatic and heterocyclic compounds with hydrazine hydrate in the presence of sodium acetate (NaOAc) is 

optimized in the present study, with good conversion and produced excellent yields. 
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II. RESEARCH METHODOLOGY 

1. OPTIMIZATION OF REACTION CONDITIONS 

 

 

Figure 1. Reduction of nitro compound (A) to amine (B) with different Bases at various temperatures and changing the 

equivalents of Hydrazine hydrate. 

Reduction of nitro compound (A) to amine (B) at different experimental parameters like different Bases, various temperatures 

and times and changing the equivalents of Hydrazine hydrate are listed in Table 1. 

 

Table 1. Operative conditions for reduction of A to B with different Bases at various temperatures and changing the 

equivalents of Hydrazine hydrate 

Entry Reagent equivalents Temperature Time (h) Yield (%) 

1 N2H2.H2O (3 equiv.) 

NaOAc (2 equiv.) 

80°C 16 6 

2 N2H2.H2O (6 equiv.) 

NaOAc (2 equiv.) 

80°C 16 41 

3 N2H2.H2O (10 equiv.) 

NaOAc (2 equiv.) 

80°C 16 92 

4 N2H2.H2O (14 equiv.) 

NaOAc (2 equiv.) 

80°C 16 92 

5 N2H2.H2O (10 equiv.) 

KOAc (2 equiv.) 

80°C 16 81 

6 N2H2.H2O (10 equiv.) 

NaOAc (2 equiv.) 

RT 24 0 

 
Entries 1 to 4 from Table 1. The studies found that 10 equivalents of Hydrazine hydrate were optimal for good reduction 

yields, and that less than 10 equivalents resulted in unsatisfactory reduction yields. It also showed that the conversion and rate of 

response between low and large levels of hydrazine hydrate did not differ significantly. There is no reduction at room temperature 

or at mild temperatures, with fixed hydrazine hydrate, sodium acetate, and solvent (Entry 6 from Table 1). It demonstrates that the 

process has only begun at extremely high temperatures. Subsequently, 10 equivalents of hydrazine hydrate and 2 equivalents of 

NaOAc at 80°C in methanol as a solvent for 18 - 24 h was shown to be an effective and efficient approach for reducing nitro groups 

including aromatic and heterocyclic compounds. The reduction was carried out with 2 equivalents of potassium acetate (KOAc) 

rather than NaOAc at fixed Hydrazine hydrate equivalents, temperature and duration (Entry 5 from Table 1).  

      In conclusion, an effective and efficient method for the reduction of nitro groups containing aromatic and heterocyclic 

compounds has been 10 equivalents of hydrazine hydrate, 2 equivalents of sodium acetate in methanol as a solvent at 80°C for 16 

to 24 h.  Then nitro aromatic compounds with various substituents were reduced under the optimized conditions as given in Table 

2. 
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2. RESULTS AND DISCUSSION 

 

 

Table 2. Reduction of aromatic nitro compounds employing Hydrazine hydrate and NaOAc under the conditions given in the 

equation 

 

 

Entry Substrate Product  Time 

(h) 

Yield (%) 

 

1 

  

 

16 

 

92 

 

2 

  

 

16 

 

91 

 

3 

  

 

16 

 

93 

 

4 

  

 

16 

 

80 

 

5 

 
 

 

16 

 

94 

 

6 
  

 

16 

 

81 

 

7 
  

 

24 

 

92 

 

8 

  

 

16 

 

83 

 

9 
  

 

16 

 

83 

 

10 

  

 

16 

 

80 

 

11 
  

 

16 

 

84 

 

12 
  

 

16 

 

91 

 

13 

  

 

16 

 

78 

 

14 

  

 

16 

 

90 

 

15 
  

 

16 

 

94 

 

16 

 
 

 

24 
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The chemo selectivity was observed in Entries [20, 21] [22].  the reduction of 1-bromo-4-(tert-butyl)-2-nitrobenzene [19] 

with 10% Pd/C, hydrazine hydrate (10 eq) in methanol at 80 °C in sealed tube for one hour has 80% conversion to 3-(tert-butyl) 

aniline [20], while the reduction of 1-bromo-4-(tert-butyl)-2-nitrobenzene [19] with hydrazine hydrate (10 eq.), sodium acetate (2 

eq) in methanol refluxed for 16 h has given 85% conversion chemo selectively 2-bromo-5-(tert-butyl) aniline [21] [22]. 

  

 
Figure 1. Chemo selective reduction 

 

Comparison of Entries 3, 4 and 9 of Table 2: Reduction of 1-bromo-4-nitrobenzene (Entry 3) has given good yield (93%) 

in 16 h whereas 1-bromo-2-nitrobenzene (Entry 4) has given less yield. Comparison of Entries 6,11, 12 and 13 of Table 2: Reduction 

of 4-bromo-2-methoxy-1-nitrobenzene (Entry 12) has given good yield (91%) in 16 h, whereas 2-bromo-5-fluoroaniline (Entry 6) 

and (4-bromo-2-chloro-1-nitrobenzene (Entry 13) has given less yields, this indicates that electron donating groups at ortho position 

have significant effect on reduction. Similar variation is observed in other reactions (Entries 1, 2 from Table 2). There is no reduction 

of 2-bromo-4-nitrophenol (Entry 16) and ethyl 2-hydroxy-3-nitrobenzoate (Entry 17). It represents that the highly acidic groups 

show significant drawback for the reduction and surprisingly (Entry 18) has no conversion.  Reduction of nitro heterocyclics in 

Entries 1 to 5 of Table 3 has given good conversion with excellent yields. 

Table 3. Reduction of Hetero aromatic nitro compounds employing N2H2.H2O and NaOAc     

 

 

 

 

Entry Substrate Product Time (h) Yield (%) 
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16 

 
91 
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16 

 
88 
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16 

 
80 
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16 

 

91 
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3. MECHANISM 

Table 4. Reduction of some common intermediates using optimized condition: Hydrazine hydrate (10 eq) and NaOAc (2 eq) in 

methanol solvent at 80°C 

Entry Substrate Product Time (h) Conversion (%)  

 

1 

  

 

16 

 

90 

 

2 

  

 

16 

 

0 

 

 The amine was formed from Entry 1 but not from Entry 2 of Table 4 [23]. Reduction of the nitro proceeding via nitroso 

compounds was observed. From these experiments a mechanism for the reduction of the NO2 group through reaction with 

hydrazine. Monohydrate was proposed (Scheme 1). 

 

 

Scheme 1. Proposed mechanism for the reduction of nitro group using hydrazine.hydrate [23] 

The first step of this reaction would involve nucleophilic attack of hydrazine on the nitro N atom to form a 1-

hydroxy-1-aryltriazane-1-oxide. Attack of a hydroxyl anion results in the formation of a nitroso intermediate. A second 

hydrazine molecule shall attack the nitroso derivative to yield 1-hydroxy-1-aryltriazane which would undergo 

transformation into the anilino derivative. This hypothesis is in agreement with the positive results obtained with the 

nitroso (Entry 1 of Table 4) and lack of reactivity of the hydroxylamine (Entry 2 of Table 4). 

III. MATERIALS AND METHODS 

GENERAL PROCEDURE 

  A solution of the nitro compound (1 mmol) in methanol (2 mL) was treated with hydrazine hydrate (8-10 mmol 

equivalents) and sodium acetate (2 mmol equivalents), heated at the desired temperature for the set period of time, cooled to 

room temperature, quenched with water (10 ml) and extracted with dichloromethane, DCM (2 × 20 mL). The combined extracts 

were washed with water (2 × 5 mL), brine solution (2. 5 mL), dried (Na2SO4), and concentrated in vacuum to give the crude 

product. Crude residue was purified by silica gel column by eluting with proper solvents. 

 

Preparation of 3-bromo-5-methylbenzene-1,2-diamine [24] [Entry 1 of Table 2] 

A solution of 2-bromo-4-methyl-6-nitroaniline (100 mg, 0.41 mmol) in methanol (2 mL) was treated with hydrazine 

hydrate (217 mg, 4.34 mmol) and sodium acetate (68 mg, 0.833 mmol), heated to 80°C for 16 h. The progress of the reaction was 

monitored by TLC. The reaction mixture was quenched with water (5 mL) extracted with DCM (2 x 10 mL), combined organic 

layers were washed with brine solution (5 mL), dried over sodium sulphate and evaporated under reduced pressure to afford crude. 

Crude residue was purified by silica gel column by eluting with 4% Methanol/DCM to afford 3-bromo-5-methylbenzene-1,2-

diamine Entry 1 (80 mg, 92%) as an off-white solid.  

1H NMR (400 MHz, DMSO): δ 6.48 (d, J = 1.2 Hz, 1H), 6.33 (d, J = 1.6 Hz, 1H), 4.76 (bs, 2H), 4.38 (bs, 2H), 2.05 (sbr, 3H). 13C 

NMR (DMSO): δ 136.34, 129.61, 127.06, 120.06, 114.20, 108.51.  LCMS (EI) m/z 201.05 (M+H, 96%).  
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Preparation of 3-bromo-5-methoxybenzene-1,2-diamine [25] [Entry 2 of Table 2] 

A solution of 3-bromo-5-methoxy-2-nitroaniline (100 mg, 0.4 mmol) in methanol (2 ml) was treated with 

h ydr a z ine  h ydr a t e  (203 mg, 4.06 mmol) and sodium acetate (68 mg, 0 . 8  mmol), heated   t o 80 ◦C for 1 6 h .  The 

progress of the reaction was monitored by TLC. The reaction mixture was quenched with water (5 mL) extracted with DCM (2 x 

10 mL), combined organic layers were washed with brine solution (5 mL), dried over sodium sulphate and evaporated under reduced 

pressure to afford crude. Crude residue was purified by silica gel column by eluting with 4% Methanol/DCM to afford 3-bromo-5-

methoxybenzene-1,2-diamine (2) (80 mg, 91%) as brown solid.  

1H NMR (400 MHz, DMSO): δ 6.26 (d, J = 2.8 Hz, 1H), 6.18 (d, J = 2.4 Hz, 1H), 4.92 (bs, 2H), 4.17 (sbr, 2H), 3.58 (s, 3H). 

13C NMR (DMSO): δ 151.91, 137.54, 126.07, 108.62, 104.06, 100.49, 55.09.  LCMS (EI) m/z 217.31 (M+H, 96%).  

 

IV. CONCLUSIONS 

A highly efficient and chemo selective method for reduction of nitroarenes and nitroheterocycles has been developed. 

Several advantages of the proposed method when compared to other methods are: (1) Methodology works on normal arenes and 

heteroarenes, (2) The chemo selective reduction can be conveniently controlled in the presence of bromo, chloro, iodo substituents, 

and (3) Most pyrophoric, toxic Raney nickel and corrosive hydrochloric acid are avoided. 
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