IJRAR.ORG

E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS (IJRAR) | IJRAR.ORG

An International Open Access, Peer-reviewed, Refereed Journal

Systematic review on analytical techniques for the determination of anti-retroviral drugs

Monali P. Kunde^{1*}, Prof. Ashwini V. Shelke¹, Dr. Anil G. Jadhav¹

Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra-422213

ABSTRACT

The concept involved in this article is to summarize different analytical methods used for the estimation of Dolutegravir, Raltegravir, Elvitegravir, Cobicistat and Elvitegravir from bulk and formulations. Drug investigation assumes an exceptionally conspicuous part in quality affirmation just as quality control of mass medications and drug plans. Quick expansion in drug businesses and creation of medication in different areas of the planet has gotten an ascent interest for new insightful methods in the drug enterprises. As a result, insightful technique advancement has turned into the fundamental movement of examination. From the bygone ages, individuals were attempting to track down completely secure ways of treating viral contaminations. In the current situation, because of the arising of new infections, the advancement of medications for their treatment is likewise acquiring equivalent significance. Prior to dispatching to the market, these medications ought to go through an approval interaction. Elite execution fluid chromatography (HPLC) combined with bright (UV), Photodiode cluster indicators (PDA), Mass spectrophotometer (MS) identifiers and so on is one of the quickest, protected and exact advancements utilized for assurance and partition of drug medications, pollutants and organic examples. HPLC is flexible and it requires some investment for measurement of medications when contrasted with old fluid chromatography strategies.

Key-words: Drug analysis, Analytical Methods, UV, HPLC, MS,

INTRODUCTION

The fundamental objective of the drug business is to furnish drug items with adequate quality, viability and wellbeing. The improvement of another medication item and its creation comprise of numerous drug processes, including scientific testing. The logical information created support further choices on how improvement ought to be sought after or give data on whether a medication item ought to be delivered. It is significant that each such turn of events or creation process furnish valid outcomes with steady quality and along these lines, it should be controlled and, if vital, constantly improved. By progress of the nature of a drug interaction, the nature of a medication item is likewise improved. Scientific techniques are among the most basic cycles in drug item improvement and creation. They assume a vital part in supporting other turn of events and creation processes all through all phases of a medication item's life cycle. It is fundamental that an insightful strategy be exact, precise and dependable, making it reasonable for its planned reason [1,2]. As a rule, the vitally working standard of a scientific strategy is detachment of the analytes present in the example. Fluid chromatography (LC) strategies are most regularly utilized, like HPLC or ultra execution fluid chromatography (UPLC), frequently in turned around stage mode with UV absorbance location. The reasons for investigation vary contingent upon the number, significance and connection of analytes that are needed not really set in stone. Insightful strategies for the measure of a functioning drug fixing (API) or assurance of its connected substances and corruption items are most generally applied [2]. Advancement of a particular and vigorous strength demonstrating LC technique for the assurance of related substances and debasement items is a complicated interaction. It requires a conscious constrained corruption of a medication substance and additionally a medication item under different pressure conditions, for example, hydrolytic, oxidative, photolytic, or warm conditions, to give focused on examples containing the analyte and its debasement items. The pressure conditions are more extreme than the sped up and long haul steadiness conditions endorsed in the ICH rules for solidness testing. A scientific technique for assurance of corruption items ought to be fit for distinguishing their expansion during the item's time span of usability and the strategy for the test ought to be equipped for identifying any abatement in the medication's substance during its time span of usability. Such strategies are solidness demonstrating [3-6].

Ongoing assessments demonstrate that 34 million individuals are presently living with HIV/AIDS around the world, with roughly 2.5 million new diseases happening every year [7]. The infection is communicated through the trading of infection containing liquids, including blood, bosom milk, semen and genital emissions [8-10]. Courses of viral disease incorporate sexual contact, infusion drug use, from mother to youngster during pregnancy, labor, or bosom taking care of, and openness of tainted body liquids to uncovered films or tissue [10, 11]. Antiretroviral treatment (ART) is the essential methodology for the treatment and the executives of the illness and can significantly lessen HIV-related dismalness and mortality [12-14]. Workmanship is firmly suggested for all HIV-contaminated people, paying little mind to pretreatment CD41 T cell count. Besides, ART has shown adequacy in infection the board as well as in viral anticipation as pre-openness prophylaxis in high-hazard populaces [15-18]. There are right now more than 25 antiretroviral (ARV) specialists endorsed for HIV treatment by the U. S. Food and Drug Administration (FDA) in both single-and multi-drug details [19]. Combinatorial ART regimens are ordinarily needed for the supported concealment of viral replication and clinical advantage [20]. At present, in excess of 100 regimens exist for the treatment of HIV [21]. ARVs evoke their remedial impacts through the designated hindrance of different phases of the viral contamination cycle. Hence, drug classes are delineated as CCR5 bad guys, viral combination inhibitors, nucleoside/nucleotide switch transcriptase inhibitors (NRTIs/NtRTIs), non-nucleoside invert transcriptase inhibitors (NNRTIs), integrase strand move inhibitors (INSTIs), and protease inhibitors (PIs). Numerous combinatorial ART regimens consolidate drugs from more than one ARV class, and the U. S. Branch of Health and Human Services (DHHS) has shown suggested and elective regimens for sickness the executives [22]. Furthermore, new treatments are constantly being looked for that exploit new popular targets, have movement against safe viral strains, have a lower frequency of unfavorable impacts, and proposition helpful dosing. New specialists of existing classes are as of now in cutting edge phases of clinical advancement [23]. The developing interest for these specialists animates a quest for new considerably more viable medications, yet in addition calls for more significant level of value control of these helpful substances and arrangements, so they are in the most noteworthy conceivable degree liberated from any debasements that might come from the creation interaction, just as from disintegrations results of dynamic or assistant substances. Accordingly, it appears to be proper to foster new insightful strategies with respect to their subjective and quantitative examination. For this point, distinctive logical techniques are utilized for deciding enemy of HIV drugs. Against HIV drugs are the new advancements of medications and there is an extraordinary need to audit the insightful work announced so far in the writings. Endeavors have been made to gather the writing from 2000 up to the present. Logical techniques permitting the assurance of TDF, FTC and EFV drugs in different media, like drug definitions, organic networks and natural examples, is examined. As of now, there are five significant classes of ARV drugs viz. nucleoside turn around transcriptase inhibitor [NRTI], non-nucleoside switch transcriptase inhibitor [NNRTI], Protease inhibitors [PI], combination inhibitor and integrase inhibitor [IIs].

The main single-tablet fixed-portion mix (FDC) antiretroviral (ARV) has been economically accessible starting around 2006 and is promoted as Atripla® [24]. A conventional item has been monetarily accessible in South Africa since April 2013 [25, 26] and comprises of efavirenz (EFV), emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) in a proportion of 600 mg/200 mg/300 mg. TDF in this amount is comparable to 245 mg tenofovir disoproxil (TNF) and 136 mg of tenofovir [27]. The tablet is taken once every day for the treatment of HIV-1 disease [28, 29]. Once-every day FDC tablets are the least difficult antiretroviral treatment accessible [30]. FDC ARV treatment is advantageous for patients as it diminishes the "pill trouble" which thus further develops adherence to treatment [28-30]. FDC were at first shown for treating HIV-positive antiretroviral gullible patients and HIV-positive pregnant ladies and the people who are breastfeeding. It is presently accessible to all patients on the proposal of a doctor [26]. Treatment with EFV, FTC and TNF is the favored first-line treatment for antiretroviral gullible HIV-1-contaminated people [30]. Bioequivalence between the measurements structure containing a solitary particle and the FDC notwithstanding great pharmacokinetics works with once day by day dosing of EFV, FTC and TNF [24, 30].

1. Cobicistat and Elvitegravir

Fig. Structure of Elvitegravir

Fig. Structure of Cobicistat

A simple, precise, rapid and accurate reverse phase HPLC method was developed for the simultaneous estimation of cobicistat and elvitegravir in the pharmaceutical dosage form. A column of ODS (250mm 4.6mm; i.d and 5μ particle size) was used along with the mobile phase comprising of 0.02M dipotassium hydrogen orthophosphate buffer (pH adjusted to 3.3) and methanol in the ratio of 80:20 (v/v). The flow rate was maintained at 1.0 ml/min and the effluents monitored at 254 nm. The retention time for cobicistat was found to be 2.58 ± 0.3 min and elvitegravir was 3.71 ± 0.3 min. The detection concentration was linear over $125-750 \mu g/ml$ for cobicistat and $12.5-75 \mu g/ml$ for elvitegravir. Regression equations of cobicistat and elvitegravir were found to be y = 25883x + 19711 and y = 27696x + 6046 respectively with regression coefficient 0.999. The % RSD for Intra and Inter day precision was < 2%. The accuracy of method was validated by recovery studies and found to be significant within acceptable range 98-102%. [31]

2. Raltegravir

Fig. Structure of Raltegravir

Raltegravir has obeyed Beer-Lambert's law 1–150 in zero order (D0) and 10–150 μg/mL in both first-order derivative (D!) and difference spectroscopic methods. Conclusion: Raltegravir has shown a wide range of linearity in all the methods, and all the methods were validated as per the ICH guidelines. These simple methods can be successfully applied for the assay of Raltegravir in tablets.[32]

3. Dolutegravir

Fig. Structure of Dolutegravir

A simple, rapid and robust reverse phase HPLC method was developed and validated for the determination of impurities in Dolutegravir drug substance. The main aim of this study is to reduce the run time of the HPLC method by developing and validating a new, less expensive HPLC method. The chromatographic separation of Dolutegravir and its related impurities is carried out by using C8 column (150 × 4.6 mm), 5 µm with 0.1% trifluoroacetic acid in water as mobile phase A, methanol as mobile phase B. The flow rate is 1.0 mL/min with gradient elution mode. The wave length for detection is 240 nm (UV detector). The developed method was validated and proved that the method was specific, accurate and precise as per ICH. The system suitability criteria found to be within the limits. The limit of detection and limit of quantification demonstrate that the method is sensitive. The linearity curve was found to be linear and the correlation coefficient obtained is not less than 0.998. The average percentage recoveries of impurities were in the range of 97 to 101%.[33]

Table no. 01: Analytical methods used for the estimation of Cobicistat and Elvitegravir

Sr.No.	Method	Mobile Phase	Detection (nm)	Ref.
		composition		
1	RP-HPLC	0.05 M Sodium	235nm	34
		dihydrogen		
		phosphate (pH 5):		
		Acetonitrile(70:30		
		v/v)		
2	RP-HPLC	Phosphate buffer	255nm	35
		(0.05M) pH 4.6:		
		ACN		
		(55:45% v/v)		
3	RP-HPLC	aceto- nitrile :	240 nm	36
		phosphate buffer		
		(10 : 90 at pH		
		6.5)		
4	RP-HPLC	water (adjusted to	245 nm	37
		pH 3 with 0.1%		
		Orthophosphoric		
		acid): Acetonitrile		
		(55:45 % v/v)		
5	RP-HPLC	ortho phosphoric	210 nm	38
		acid buffer,		
		Acetonitrile,		
		(50:50v/v)		
6	RP-HPLC	Buffer 0.1%	293 nm	39
		Formic acid:		
		Acetonitrile		
7	RP-HPLC	0.05M Phosphate	260 nm	40
		buffer and		
		methanol		
		(30:70v/v)		
8	RP-HPLC	0.1 M NaH2 PO4	260 nm	41
		and methanol		

		(70:30 v/v)		
9	RP-HPLC	0.05M Phosphate	240 nm	42
		buffer pH 3.0		
		(adjusted with		
		dilute phosphoric		
		acid) and		
		Acetonitrile in the		
		ratio 95:5		
10	RP-UPLC	0.1%	250 nm	43
		Orthophosphoric		
		acid buffer and		
		acetonitrile (35:65		
		v/v)		

Table no. 02: Analytical methods used for the estimation of Elvitegravir

Sr.No.	Method	Mobile Phase	Detection (nm)	Ref.
		composition		
1	RP-HPLC	gradient mixture of	240nm	44
		0.1% trifluoroacetic		
		acid and acetonitrile		
2	Liquid	20-m M ammonium	250 nm	45
	Chromatography	acetate /MeOH		
	Tandem Mass	(50:50)		
	Spectroscopy			
3	Liquid Chromato	KH2PO4 (0.02 M)	240 nm	46
	Graphic Method	in 1000 ml of		
		Water:Acetonitrile		
4	UPLC-MSMS	Evaluation of Acc	uracy Shows A	47
		Deviation		
		<15% from target	concentration At	
		Each Quality		
		control level. Interd	day and intraday	

	assay	y variation.		
	R.T.	- 4.2 min.		
5 RP-	:Met	M KH2PO4 Ahanol(80:20)v/v Acetonitrile & er 60:40 v/v	257 nm	48

 $Table \ no. \ 03: Analytical \ methods \ used \ for \ the \ estimation \ of \ Raltegravir$

Sr.No.	Method	Mobile Phase	Detection (nm)	Ref.
		composition		
1	Simple UV	Water	331.6 nm	49
	Spectro			
	photometric			
	Method			
2	UV-HPLC	KH2PO4	297 nm	50
3	HPTLC	Toluene:Ethyl	218nm	51
		Acetate:Methanol:		
		Glacial Acetic Acid		
		(4:5:0.6:0.4% v/v)		
4	RP-HPLC	Phosphate Buffer and	247nm	52
		Acetonitrile 40:60 v/v		
5	RP-HPLC	phosphate buffer :	219nm	53
		Methanol (45:55%)(PH		
		3.0)		
6	UPLC	/mixture of sodium	240 nm	54
		perchlorate(0.2g I 1000		
		ml of water,PH		
		2.5±0.05 with		
		perchloric acid)and		
		Acetonitrile 65:35(v/v)		
7	HPLC-PDA	Acetonitrile and	240 nm	55
		Phosphate Buffer) C		
		l	1	

		- 18 Reverse Phase		
8	HPLC-MS/MS	42.5/57.5(v/v%)0.1Mm	240 nm	56
		EDTA in 0.1% formic		
		acid /Methanol		

Table no. 04: Analytical methods used for the estimation of Dolutegravir

Sr.No.	Method	Mobile Phase composition	Detection	Ref.
			(nm)	
1	UV	Water	259.80 nm	57
	Spectrophotometric			
	Method			
2	UV	8M Urea as Hydrotropic	256 nm	58
	Spectrophotometric	Solubilizing Agent		
	Method			
3	UV-	Methanol	259.80 nm	59
	Spectrophotometry			
	And RP-HPLC			
4	HPLC	acetonitrile: water (pH 7.5)	260 nm	60
		in the ratio 80:20 v/v		
5	High-Performance	methanol:chloroform:formic	265 nm	61
	Thin-Layer	acid in the proportion of		
	Chromatographic	8:2:0.5 v/v/v		
	Method			
6	HPLC MS/MS	acetonitrile and water in the	260 nm	62
		ratio 60:40 containing 0.1%		
		formic acid		

CONCLUSION

As there are several analytical methods (HPLC, UV, HPTLC, UPLC & MS) were reported there is a continued need for developing more efficient, sensitive, accurate and precise methods for the analysis of the Dolutegravir, Raltegravir, Elvitegravir, Cobicistat and Elvitegravir alone and in combination in the dosage forms and in the biological fluids.

REFERENCES

- [1]. Parr MK, Schmidt AH. Life cycle management of analytical methods. J Pharm Biomed Anal 2018;147:506-17.
- [2]. Gaudin K, Ferey L. Quality by design: a tool for separation method development in pharmaceutical laboratories. LC-GC 2016;29:16-25.
- [3]. Maggio RM, Vignaduzzo SE, Kaufman TS. Practical and regulatory considerations for stabilityindicating methods for the assay of bulk drugs and drug formulations. TrAC, Trends Anal Chem 2013;49:57-70.
- [4]. Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs-a review. J Pharm Anal 2014;4:159-65.
- [5]. Singh S, Junwal M, Modhe G, Tiwari H, Kurmi M, Parashar N, et al. Forced degradation studies to assess the stability of drugs and products. TrAC, Trends Anal Chem 2013;49:71-88.
- [6]. ICH Harmonised Tripartite Guideline: Stability Testing of New Drug Substances and Products Q1A (R2), current Step 4 version; International Conference on Harmonisation: Geneva; 2003.
- [7]. Global report: UNAIDS report on the global AIDS epidemic; 2012.
- [8]. Zagury D, Bernard J, Leibowitch J, Safai B, Groopman JE, Feldman M, et al. HTLV-III in cells cultured from semen of two patients with AIDS. Science 1984;226:449-51.
- [9]. Vogt MW, Witt DJ, Craven DE, Byington R, Crawford DF, Schooley RT, et al. Isolation of HTLV-III/IAV from cervical secretions of women at risk for AIDS. Lancet 1986;1:525-7.
- [10]. Friedland GH, Klein RS. Transmission of the human immunodeficiency virus. N Engl J Med 1987;317:1125-35.
- [11]. Chermann JC. Sexual and mother-to-child transmission of the human immunodeficiency virus type 1: a review. Am J Reprod Immunol 1998;40:183-6.
- [12]. Mocroft A, Vella S, Benfield TL, Chiesi A, Miller V, Gargalianos P, et al. Changing patterns of mortality across Europe in patients infected with HIV-1. Euro SIDA Study Group. Lancet 1998;45:1093-9.
- [13]. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med 1998;338:853-60.

- [14]. Vittinghoff E, Scheer S, O' Malley P, Colfax G, Holmberg SD, Buchbinder SP. Combination antiretroviral therapy and recent declines in AIDS incidence and mortality. J Infect Dis 1999;179:717-20.
- [15]. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, *et al.* Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 2010;363:2587-99.
- [16]. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, *et al.* Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 2011;365:493-505.
- [17]. Centers for Disease Control and Prevention (CDC). Interim guidance: preexposure prophylaxis for the prevention of HIV infection in men who have sex with men. MMWR Morb Mortal Wkly Rep 2011;60:65-8.
- [18]. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, *et al.* Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 2012;367:399-410.
- [19]. Food, Drug Administration, FDA-approved ARV drugs; 2020.
- [20]. Volberding PA, Deeks SG. Antiretroviral therapy and management of HIV infections. Lancet 2010;376:49-62.
- [21]. Capetti A, Astuti N, Cossu MV, Rizzardini G, Carenzi L. The role of therapeutic drug monitoring and pharmacogenetic testing in the management of HIV infection: a review. J Aids Clin Res 2015;6:11-9.
- [22]. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services; 2015.
- [23]. Burcin B, Bengi U, Ozkan SA. A review of electroanalytical techniques for determination of anti-HIV drugs. Int J Electrochem 2011. https://doi.org/10.4061/2011/343947
- [24]. Echenique IA, Rich JD. EFV/FTC/TDF-associated hepatotoxicity: a case report and review. AIDS Patient Care STDs 2013;27:493–7.
- [25]. Aspen Pharmacare, "TribussTM,"; 2011.
- [26]. Zamisa T. HIV patients revel in the one pill a day age; 2014.
- [27]. European Medicines Agency, Summary of product characteristics: Viread 245 mg film-coated tablets; 2007.
- [28]. Deeks ED, Perry CM, Efavirenz/emtricitabine/tenofovir disoproxil fumarate single tablet regimen (Atripla®): a review of its use in the management of HIV infection. Drugs 2010;70:2315–38.
- [29]. Takahashi M, Kudaka Y, Okumura N, Hirano A, Banno K, Kaneda T. Determination of plasma tenofovir concentrations using a conventional LC-MS method. Biol Pharm Bull 2007;30:1784-6.
- [30]. Llibre JM, Clotet B. Once-daily single-tablet regimens: a long and winding road to excellence in antiretroviral treatment. AIDS Rev 2012;14:168–8.

- [31]. A.Biksham Babu, G.Ramu, S.Venkata Rao, T.Neeharika and C.Rambabu, Spectrophotometric Determination Of An Antiretroviral Drug Stavudine In Bulk And Pharmaceutical Formulations, Rasayan J. Chem, Vol.4, No.2 (2011), 336-342
- [32]. B. M. S. Kumar, B. Rajkamal, D. V. R. N. Bhikshapathi and T. Padmini, Development And Validation Of A New RP-HPLC Method For Simultaneous Determination Of Antiretroviral Drugs: Cobicistat And Elvitegravir, IJPSR, 2019; Vol. 10(11): 4981-4987.
- [33]. Manish Yadav1,2, Puran Singhal1, Sailendra Goswami1, Umesh C. Pande2, Mallika Sanyal3, and Pranav S. Shrivastav, Selective Determination of Antiretroviral Agents Tenofovir, Emtricitabine, and Lamivudine in Human Plasma by a LC-MS-MS Method for a Bioequivalence Study in Healthy Indian Subjects, Journal of Chromatographic Science, Vol. 48, October 2010
- [34]. PRATIK K. VORA1, PROF. SURESH C. AMETA2, DR. MRUNAL KRISHNARAO SHIRSAT, DEVELOPMENT AND VALIDATION OF STABILITY INDICATING SIMULTANEOUS ESTIMATION OF ATAZANAVIR AND COBICISTAT BY RP-HPLC METHOD, IJPRBS, 2016; Volume 5(4): 111-132
- [35]. Prem Kumar Bichala*, Rakesh sharma, Naveen Kumar, Ali Lawal, Auwalu Ibrahim and Mohammed ANALYTICAL METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF DARUNAVIR AND COBICISTAT BY RP- HPLC METHOD, IJRPC 2020, 10(1), 131-136
- [36]. K.Sureshbabu1, B.Koteswararao2, C.Rambabu, Validated stability indicating RP-HPLC method for the determination of Cobicistat in bulk and pharmaceutical formulations, ACAIJ, 15(11) 2015 [465-475]
- [37]. D. Sindu Priya*, D. Gowri Sankar and D. Jaya Chandrika, Stability indicating RP-HPLC method for the simultaneous estimation of darunavir ethanolate and cobicistat in bulk and tablet dosage form, Der Pharmacia Lettre, 2016, 8 (14):1-11
- [38]. J. Sathish Kumar Reddy1, K. R. S. Prasad1 and K. Suresh Babu, A stability indicating RP-HPLC method for simultaneous estimation of darunavir and cobicistat in bulk and tablet dosage form, Der Pharmacia Lettre, 2016, 8 (12):89-96
- [39]. Pemra Raju*1, K. Thejomoorthy2, P.Sreenivasa Prasanna, Development and Validation of New Analytical Method for The Simultaneous Estimation of Darunavir And Ritonavir in Pharmaceutical Dosage Form, Int J Indig Herbs Drugs 2021;6(2):49-57
- [40]. Srinivas Ganta*, Vidyadhara. S, A NEW SIMPLE ANALYTICAL METHOD FOR SIMULTANIOUS ESTIMATION OF COBICISTAT AND ELVETIGRAVIR BY RP-HPLC-PDA IN THEIR TABLET DOSAGE FORMS, J Global Trends Pharm Sci, 2017; 8(1): 3584 – 3589
- [41]. M. Venkata Siva Sri NalInI, P. Rama Krishna VenI, B. Haribabu, Determination of Darunavir and Cobicistat Simultaneously Using Stability Indicating RP-HPLC Method, Marmara Pharmaceutical Journal 20: 293-302, 2016

- [42]. S. Madhavi*, A. Prameela Rani, Development and validation of RP-UPLC method for simultaneous estimation of Cobicistat and Darunavir, *Research J. Pharm. and Tech.* 10(12): December 2017,4343-4349
- [43]. R. K. GUMMALURI*, T. V. N. PARTHASARATHI AND G. ANJANAMADHULIKA, Simultaneous Method for Determination of Emtricitabine, Tenofovir Disoproxil Fumarate, Elvitegravir and Cobicistat in Tablets by HPLC, Indian J Pharm Sci 2016;78(4):532-537
- [44]. Girija B.Bhavar*, Sanjay S.Pekamwar. Kiran B.Aher, Sanjay R.Chaudhari .Simple Spectrophotometric Method for Estimation of Raltegravir Potassium in Bulk and Pharmaceutical formulations. Journal of Applied Pharmaceutical Sciences Vol.3(10).pp.147- 150,October,2013 at DOI:10.7324/JAPS.2013.31026
- [45]. Notari S.Tommasi C., Nicastri E.Bellagamba R, Tempestilli M, Percillo LP et.al. Simultaneous Determination of Maraviroc and Raltegravir in human plasma by HPLC-UV method .Inter Union Biochem. Mol Biology life 2009;61(Suppl 4):470-475
- [46]. T.Sudha, T.Raghupathi. Reverse Phase High Performance Liquid Chromatography and Ultra Violet Spetrophotometric Method for the Estimation of Raltegravir Potassium in Bulk and in Tablet Dosage Form. Global Journal of Medical Research. Volume 11 Issue 2 Version 1.0 July 2011
- [47]. A.Lakshamana Rao and MS. Raghu Ram. Validated Reverse Phase HPLC Method for Determination of Raltegravir in Pharmaceutical Preparation. Ijrpc2012,2(1) Issn:2231:2781
- [48]. Rami Reddy B.V, Reddy B.S., Raman N .V.V.S.S. , Jyothi G., Chader Reddy KS, Rambabu C. Validated stability indicating UPLC assay method and degradation behavior of raltegravir potassium. Int JPharm Technol .2012;4(1):4045-59
- [49]. D' Avolio A ,Baietto L, Siccardi M, Simiele M, Oddone V, Bonora S,Di Perri G.An HPLC-PDA method for the simultaneous quantification of the HIV integrase inhibitor Raltegravir,the new nucleoside reverse transcriptase inhibitor etravirine ,and 11 other antiretroviral agents in the plasma of HIV infected patients. Ther Drug Monit .2008;30(6):662-69
- [50]. Rezk NL, White N, Kashuba AD. An Accurate and Precise High Performance Liquid Chromatography method for the rapid quantification of the novel HIV integrase inhibitor raltegravir in huma blood plasma after solid phase extraction. Anal Chim Acta. 2008:628(2):204-13
- [51]. Merschman S A, Vallano PT, Wenning LA, Matuszewki BK, Woolf EJ. Determination of the HIV integrase inhibitor ,MK- 0518(Raltegravir),in the human plasma using 96-well liquid-liquid extraction and HPLC-MS/MS .JChromatogra B Analyt Technol Biomed Life Sci.2007:857(1):15-24.
- [52]. Long MC, Bennetto-Hood C, Acosta EP. A sensitive HPLC-MS-MS Method for the determination of raltegravir in the human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2008:867(2):165-71

- [53]. Raghu Ram Jampala, V.Kiran Kumar. Appala Raju Nemala. Developement and Application of Liquid Chromatographic Method for Simultaneous Determiation of Elvitegravir, Tenofovir DF, Emtricitabine and Cobicistat in fixed Dosage form. 23rd June 2014.5(1):7-13
- [54]. Herve Millart. Validation of a fast method for quantitative analysis of Elvitegravir ,Raltegravir, maraviroc, etravirine, tenofovir, boceprevir and 10 other antiretroviral agents in human plasma samples with a new UPLC-MS/MS technology.
- [55]. Padigela Swetha, V.V.S.Rajendra Prasad, M.Bhagava Raju, N.Suresh Kumar.Estimation of Elvitegravir in the Tablet Dosage Forms by RP-HPLC.IAJPR.2013;3(6):4697-4705
- [56]. Bhavar Girija Balasaheb, Aher Kiran Balasaheb, Thorat Ravindra Subash, Kakadsachein, Jijabapu, Pekamwar Sanjay Sudhakar, Development and Validation of UV Spectrophotometric Method For Estimation Of Dolutegravir Sodium In Tablet Dosage Form, Malaysian Journal Of Analytical Sciences, 19(6), 2015, 1156-1163.
- [57]. S.K Masthanamma, T. Ananta Sridhar, P Saidulu, A Novel UV Spectrophotometric Method Development and Validation of Dolutegravir In Bulk and Its Laboratory Synthetic Mixture by Using 8M Urea as Hydrotropic Solubilizing Agent, International Journal of Pharmaceutical Science And Drug Research, 7 (4), 2015, 370-375.
- [58]. R.Srinivasan, K Lurdhu Mary, G Kashmana, D Rajash, B Rajini, Method Development And Validation Of Tenofovir Disoproxil Fumarate, Dolutegravir And Emtricitabine In Combined Tablet Dosage Form By UV-Spectrophotometry And RP-HPLC, International Journal Of Pharmacy And Analytical Research, 3 (4), 2014, 414-421.
- [59]. K. Chandrashekar Reddy, S.R Pavan Kumar, Jagadeesh Kumar, N. Sreenivas, Hemant Kumar Sharma, Stability Indicating HPLC Method for The Quantification (4S, 12R)-Enantiomer And (4R, 12S) Diasteriomer In Dolutegravir Sodium, International Journal of Pharmacy And Pharmaceutical Research, 9(2), 2017, 52-63.
- [60]. Girija.B.Bhavar, Sanjay S Pekawar, Kiran B.Aher, Ravindra S.Thorat and Sanjay R.Chaudhari, High-Performance Liquid Chromatographic and High-Performance Thin-Layer Chromatographic Method for the Quantitative Estimation of Dolutegarvir Sodium in Bulk Drug and Pharmaceutical Dosage Form, Sci Pharm. 84(2), 2016April-June, 305-320.
- [61]. Chantelle-Bennetto-Hood, Glenn Tabott, Paul Savina and Edward. P.Acosta, A Sensitive HPLC MS/MS Method for the Determination of Dolutegravir in Human Plasma, Journal Of Chromatography B, Analytical Technologiesin the Biomedical and Life Sciences, 2014 Jan 15; 225-232. doi:10.1016/J.jchromb.2013.11.054.
- [62]. Somshankar Dubey, Mahesh Duggirala, Simultaneous Estimation Of Lamivudine and Dolutegravir by UPLC Method, International Journal of Applied Pharmaceuticals, 10(1), Jan 2018, 46-52.