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Abstract —Plant leaf diseases pose significant threats to global agriculture, yet traditional deep learning methods require extensive 

labelled data. We present a hierarchical few-shot learning (FSL) framework combining dataset cleaning, structured dataset splitting, 

and prototypical networks built on an EfficientNet-B0 backbone. We first cleaned the Plant Village dataset using intra-class 

embedding similarity, retaining 12 robust disease classes (13,135 images). Next, we created 5-way, 5-shot training and validation 

splits (total 240 images). The model was trained for up to 20 epochs with early stopping, achieving a peak validation combined 

accuracy of 95.73% at epoch 6 (plant-level 96.13%, disease-level 95.33%). These results demonstrate reliable classification 

performance in low-data regimes, paving the way for cost-effective, scalable plant disease diagnostics. 

Index Terms—Few-Shot Learning, Plant Disease, Prototypical Network, EfficientNet-B0, Dataset Cleaning, Hierarchical 

Classification, Early Stopping. 

1. Introduction 

Plant leaf diseases, caused by bacterial, fungal, and viral pathogens, drastically reduce crop yields and quality. Manual disease 

inspection across large fields is time-consuming, inconsistent, and often impractical. [1] While convolutional neural networks 

(CNNs) have improved diagnostic accuracy, they demand thousands of labelled samples per class—an unrealistic requirement for 

scarce or emerging diseases.[2] Few-shot learning (FSL) mitigates this limitation by enabling generalization from only a handful of 

examples. In this work, we propose a hierarchical FSL framework that: (1) cleans the dataset to ensure intra-class coherence, (2) 

constructs balanced k-shot splits, and (3) trains prototypical networks for both coarse- and fine-grained classification. Our 

contributions include: 

1. A cleaned Plant Village subset: 12 disease classes filtered via an embedding-based similarity threshold 

(≥ 0.7), yielding 13,135 images. 

2. Structured few-shot splits: 5-way, 5-shot train/validation sets (120 support and 120 query images). 

3. A hierarchical prototypical network on EfficientNet-B0 achieving 95.73% combined validation accuracy under strict 

low-data conditions. 
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2. Related Work 

A. Traditional  and Deep Learning Approaches 

Early plant-disease detection efforts relied heavily on manually engineered features—color histograms, texture descriptors (e.g., 

GLCM), and shape-based metrics—fed into classical classifiers like SVMs and K-Nearest Neighbors. While these pipelines 

achieved reasonable accuracy on controlled datasets, they proved brittle in field conditions: varying illumination, complex 

backgrounds, and leaf occlusions caused a steep drop in performance [3]. With the advent of deep learning, convolutional neural 

networks (CNNs) revolutionized the field by learning hierarchical feature representations directly from raw pixels [4]. Models such 

as VGG, ResNet, and later EfficientNet extract multi-scale spatial patterns (vein structure, lesion morphology) in an end-to-end 

fashion, yielding state-of-the-art accuracy (often >95% on benchmark datasets) [5], [6]. However, this accuracy gain comes at the 

cost of massive labeled datasets—typical implementations require thousands of annotated images per disease class, which are labor-

intensive and costly to acquire in agricultural settings. 

B. Transfer Learning and Zero-Shot Learning 

To mitigate the data-hungry nature of deep CNNs, researchers turned to transfer learning, repurposing models pretrained on large-

scale corpora (e.g., ImageNet) and fine-tuning them on limited plant-disease images.[7] This paradigm reduces annotation 

requirements and speeds convergence, yet still often demands on the order of tens to hundreds of samples per class to avoid 

overfitting [8]. Zero-shot learning (ZSL) pushes this boundary further by leveraging semantic embeddings—word vectors, ontology 

graphs, or attribute annotations—to recognize entirely unseen disease categories at test time [9]. ZSL systems map visual features 

into a shared semantic space, then infer novel classes via their descriptive vectors. Although promising for emerging or rare diseases, 

zero-shot approaches hinge on the availability of reliable auxiliary information (e.g., attribute lists, relationships), which is scarce 

or inconsistent across plant pathology domains. 

C. Few-Shot Learning in Agriculture 

Few-shot learning (FSL) bridges the gap between transfer learning and ZSL by enabling rapid adaptation to new classes with only 

a handful of examples. Metric-based FSL methods—prototypical networks, matching networks, and relation networks—construct 

embedding spaces where samples cluster by class, facilitating classification via simple distance metrics [10], [11]. While these 

techniques have demonstrated competitive performance on standard benchmarks (Omniglot, mini-ImageNet), their application to 

plant disease detection remains limited. Existing agricultural FSL studies often neglect two critical factors: (1) hierarchical disease 

taxonomy, where coarse-level (e.g., fungal vs. bacterial) and fine-level (specific pathogen) labels exhibit structured relationships; 

and (2) robust dataset cleaning, ensuring that intra-class visual coherence is preserved despite noisy or mislabeled images [12], 

[13]. Our work addresses both gaps by implementing a hierarchical prototypical network on an embedding-cleaned subset of 

PlantVillage, thus providing reliable few-shot classification under realistic, low-data constraints. 

 

3. Methodology 

Our pipeline involves (A) dataset cleaning, (B) few-shot split creation, (C) preprocessing and augmentation, and (D) hierarchical 

prototypical network training. 

A. Dataset Cleaning 

We loaded 38 classes from the Plant Village train and Val directories, extracted EfficientNet-B0 embeddings normalized to unit 

length, and computed average intra-class cosine similarity. Classes with mean similarity <0.7 were removed, resulting in 12 classes 

(13,135 images)[14]. 

B. Few-Shot Split Creation 

From the cleaned classes, we sampled 10 support and 10 query images per class for both training and validation. This yielded 120 

support images in train and 120 query images in Val (total 240 images). 

C. Preprocessing & Augmentation 

Images are resized to 224×224 px, normalized with ImageNet mean/std, and during training augmented with random resized crop, 

horizontal/vertical flips, color jitter, rotation, and random erasing to enhance generalization[15]. 

D. Hierarchical Prototypical Networks 

We remove the classifier head of EfficientNet-B0 to extract 1280-D features, followed by an embedding head (Linear 
1280→768, ReLU, Dropout, Linear 768→384, Batch Norm)[16]. Two prototypical network instances perform: 

● Level 1: 5-way classification among broad categories (e.g., fungal, bacterial). 

● Level 2: 5-way classification among specific diseases (e.g., powdery mildew vs. early blight). 

Class prototypes are computed as the mean of support embeddings, and Euclidean distances to query embeddings produce 

logits for classification. 
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Fig.I. System Architecture 

4. ALGORITHM 

We employ a hierarchical prototypical network trained episodically for few-shot plant disease classification. In each 

episode, the model samples 5 classes, with 5 support and 10 query images per class.[17] Support images are embedded 

using EfficientNet-B0 and a projection head. For each class, a prototype is computed as the mean of its support 

embeddings. Each query image is embedded, and its squared Euclidean distance to each prototype is calculated.[18] 

The probability that a query belongs to a class is determined by a SoftMax over the negative distances (optionally scaled 

by a temperature parameter).[19] The model is optimized using cross-entropy loss with label smoothing. Model 

parameters are updated via AdamW, with early stopping based on validation accuracy and overfitting criteria. The core 

of the method is summarized by the following formula for classification probability: 

p (y =c | xq)  =   exp (-dc(xq)/T 

            ∑ c’ exp(-dc(xq)/T) 

Where dc(xq) is the squared Euclidean distance between the query embedding and class prototype, and T is the 

temperature parameter. This framework enables rapid adaptation to new classes by learning a metric space suitable for 

distance-based classification[20]. 

 

5. Experimental Setup and Results 

A. Hardware & Implementation: Experiments ran on an NVIDIA GPU (if available) or CPU, implementation in 

PyTorch, training for up to 20 epochs with AdamW (lr=5e-5), ReduceLROnPlateau scheduler, gradient scaling when 

GPU used. 

B. Episode Configuration: Each epoch consists of 20 training episodes (5-way, 5-shot, 10 query) and 10 validation 

episodes (5-way, 5-shot, 15 query). Early stopping triggers after 5 epochs without improvement or detected overfitting 

(train-Val gap >5%). 

C. Quantitative Results: 

1) Table I shows epoch-wise metrics, with peak combined validation accuracy at epoch 6 on fewShot dataset.(240 

images) 

Epoch Train Loss Train Combined Acc Val Plant Acc Val Disease Acc Val Combined Acc 

 1   1.4206   46.50%   89.07%   93.47%   91.27%  

 2   1.1427   69.40%   94.40%   96.53%   95.47%  

 3   1.0142   80.30%   93.60%   94.53%   94.07%  

 4   0.9302   87.10%   91.87%   95.47%   93.67%  

 5   0.8720   92.00%   91.07%   98.53%   94.80%  

 6   0.8698   92.60%   96.13%   95.33%   95.73%  

 7   0.8051   96.20%   92.67%   97.60%   95.13%  

 8   0.8178   95.50%   91.73%   95.87%   93.80%  

 9   0.8347   94.70%   94.27%   95.87%   95.07%  

 10   0.8113   96.00%   94.13%   95.07%   94.60%  

Early stopping occurred at epoch 11 with no further improvement. 
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2) Now that we’ve shown performance on few‑shot episodes, we evaluate on the entire cleaned PlantVillage 

dataset(13,135 images) 

 

Fig.2  Evaluation Matrix 

 

D. Dataset Statistics: Post-cleaning: 12 classes, 13,135 images. Few-shot splits: 240 images total (train 120, Val 120). 

 

Fig.3. Accuracy vs Epoch 

Results 

To test the model in a real-world scenario, we developed a web-based interface using Flask. The interface allows users 

to upload an image of a plant leaf and receive a prediction of the plant name and its health status. 

Figure A shows the upload interface where the user selects an image. 

 

 

Fig A : Uploaded Image 
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Figure B displays the result page showing the predicted plant (Raspberry) and the classification (Healthy). 

 

 

Fig B:  Prediction Result 

 

6.  CONCLUSION AND FUTURE WORK 

 

We demonstrated that a hierarchical prototypical network with EfficientNet-B0 reliably classifies plant leaf diseases 

using only 10 samples per class for both training and validation, achieving a validation accuracy of 95.73%. This 

approach underscores the model's capability to learn effectively from limited data, making it suitable for real-world 

agricultural scenarios where large labelled datasets are often unavailable. 

Future work will focus on two key directions: 

Zero-Shot Learning: Integrate zero-shot learning techniques to enable the model to recognize novel disease classes 

without any labelled examples, leveraging semantic embeddings or attribute-based descriptions. 

Expanded Taxonomy: Incorporate a broader range of plant species and additional disease types to enhance the 

model’s generalizability and coverage across diverse agricultural contexts. 
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