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Abstract:-  

A micro strip filter is an electronic filter that uses micro strip transmission lines to create 

circuitry that selectively leaves or blocks certain frequency signals. It is a passive device 

commonly used in communications, radar, and other electronic systems to reduce unwanted 

signals or noise and improve the quality of desired signals. The filter works by combining 

the effects of distributed capacitance, inductance and resistance in the micro strip 

transmission line and the placement of resonators such as capacitors or coils to create 

bandpass, low pass or high pass. Micro strip filters can be designed with narrow or wide 

bandwidth, high or low insertion loss, and high or low attenuation. They are compact and 

lightweight, allowing easy integration into printed circuit boards (PCBs) or other circuits. 

By applying a high frequency microwave signal, its h-parameter, s-parameter, y-parameter, 

z-parameter and Smith diagram are investigated. For this, we used 3 software HFSS, CST 

and IE3D. The results are consistent with almost any software.     

 

                                                CHAPTER -1 

 
INTRODUCTION: Micro strip Phase Bridge/Filters play important roles in many 

RF/microwave applications. Emerging applications such as wireless communications 

continue to challenge RF/microwave filters with ever more stringent requirements – higher 

performance, smaller size, lighter weight, and lower cost. The recent advances in novel 

materials and fabrication technologies, including high-temperature superconductors (HTS), 

low-temperature co fired ceramics (LTCC), monolithic microwave integrated circuits 

(MMIC), microelectromechanical system (MEMS), and micromachining technology, have 

stimulated the rapid development of new micro strip and other filters for RF/microwave 

applications. In the meantime, advances in computer-aided design (CAD) tools such as full-

wave electromagnetic (EM) simulators have revolutionized filter design. Many novel micro 

strip filters with advanced filtering characteristics have been demonstrated. However, up 

until now there has not been a single book dedicated to this subject. 
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Micro strip Filters for RF/Microwave Applications[1] offers a unique and comprehensive 

treatment of RF/microwave filters based on the micro strip structure, providing a link to 

applications of computer-aided design tools and advanced materials and technologies. Many 

novel and sophisticated filters using computer-aided design are discussed, from basic 

concepts to practical realizations. 

The outstanding features of this filter include discussion of many novel micro strip 

configurations with advanced filtering characteristics, new design techniques, and methods 

for filter miniaturization. It emphasizes computer analysis and synthesis and full-wave 

electromagnetic (EM) simulation through a large number of design examples. Applications 

of commercially available software are demonstrated. Commercial applications are included 

as are design theories and methodologies, which are not only for micro strip filters, but also 

directly applicable to other types of filters, such as waveguide and other transmission line 

filters. Therefore, this book is more than just a text on micro strip filters. 
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over many evenings, weekends, and holidays. In particular, without the help of Kai, 

completing this book on time would not have been possible.                                          

 

                                              CHAPTER -2 
 
MICRO STRIP FILTER 

First of all Micro strip Phase Bridge is a Filter which can be realized in two ways 

1) By using LC (lumped) Component Approach. 

2) By using Distributed Transmission Line Approach. 

LC lumped Component cannot be used as a Filter at high frequencies because as frequency 
increases there is a reduction in wavelength. So, we have to go through a Distributed Approach. 
In Distributed Approach we can use Micro strip Filter which is used in Transmission Line. 

Micro strip Line is one of the most popular types of Planar transmission Line, primarily 

because it can be fabricated by Photolithographic Process and is easily integrated with other 

passive and active microwave devices. The geometry of a Micro strip Line is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Micro strip transmission line. (a) Geometry. (b) Electric & magnetic field lines. 

2.1 Micro strip 

Micro strip line is one of the most popular types of planar transmission lines, primarily 

because it can be fabricated by photolithographic processes and is easily integrated with other 

passive and active microwave devices. The geometry of a micro strip line is shown in Figure 

2.1 (a). A conductor of width W is printed on a thin, grounded dielectric substrate of thickness 

d and relative permittivity
r ; a sketch of the field lines is shown in Figure 2.1 (b). 

If the dielectric were not present  1r  , we could think of the line as a two-wire line 

consisting of two flat strip conductors of width W, separated by a distance 2d (the ground plane 
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can be removed via image theory). In this case we would have a simple TEM transmission line, 

with 
pv c and

0k  . 

The presence of the dielectric, and particularly the fact that the dielectric does not fill the 

air region above the strip  y d , complicates the behavior and analysis of the micro strip line. 

Unlike strip line, where all the fields are contained within a homogeneous dielectric region, 

micro strip has some (usually most) of its field lines in the dielectric region, concentrated 

between the strip conductor and the ground plane, and some fraction in the air region above the 

substrate. For this reason the micro strip line cannot support a pure TEM wave, since the phase 

velocity of TEM fields in the dielectric region would be / rc  , but the phase velocity of TEM 

fields in the air region would c. Thus a phase match at the dielectric air interface would be 

impossible to attain for a TEM-type wave. 

In actually, the exact fields of a micro strip line constitute a hybrid TM-TE wave, and 

require more advanced analysis techniques than we are prepared to deal with here. In most 

practical applications, however, the dielectric substrate is electrically very thin  d  , and so 

the fields are quasi-TEM. In other words, the fields are essentially the same as those of the 

static case. Thus, good approximations for the phase velocity, propagation constant and 

characteristic impedance can be obtained from static or quasi-static solutions. Then the phase 

velocity propagation constant can be expressed as 

p

e

c
v 


         … 2.1 

0

e

c
k 


         … 2.2 

where e  is the effective dielectric constant of the micro strip line. Since some of the field lines 

are in the dielectric region and some are in air, the effective dielectric constant satisfies the 

relation 

1 e r   

and is dependent on the substrate thickness, d, and conductor width, W. 

We will first present design formulas for the effective dielectric constant and 

characteristic impedance of micro strip line; these results are curve-fit approximations to 

rigorous quasi-static solutions [8], [9]. Then we will outline a numerical method of solution 

(similar to that used in the previous section for strip line) for the capacitance per unit length of 

micro strip line. 
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2.2 Formulas for Effective Dielectric Constant, Characteristic Impedance, and 

Attenuation 

The effective dielectric constant of a micro strip line is given approximately by 

1 1 1

2 2 1 12 /

r r
e

d W

   
  


  …2.3  

The effective dielectric constant can be interpreted as the dielectric constant of a 

homogeneous medium that replaces the air and dielectric regions of the micro strip, as shown 

in Figure 2.2. The phase velocity and propagation constant are then given by equations 2.1 and 

2.2. 

 

 

 

 

 

 

 

 

 

Fig. 2.2  Equivalent geometry of quasi-TEM micro strip line, where the dielectric slab of thickness d and 

relative permittivity r  has been replaced with homogenous medium of effective relative 

permittivity, e  

Given the dimensions of the micro strip line, the characteristic impedance can be 

calculated as 

 

0

60 8
1 / 1

4
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e

e
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W d
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

 
      

 …2.4 

For a given characteristic impedance Z0 and dielectric constant r , W/d ration can be 

found as 

   

2

8
/ 2

2

2 1 0.61
1 1 2 1 1 1 0.39 / 2
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 …2.5 

Where 

0 1 1 0.11
0.23
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r r

r r
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A

    
   
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Considering micro strip as a quasi-TEM line, the attenuation due to dielectric loss can be 

determined as 

 

 
0 1 tan

/ ,
2 1

r e

d

e r

k
Np m




  


  
 … 2.6 

where tan  is the loss tangent of the dielectric. This result is derived from 
tan

/
2

d

k
Np m


  by 

multiplying by a “filling factor”. 

 

 

1

1

r e

e r

  

  
 

which accounts for the fact that the fields around the micro strip line are partly in air (lossless) 

and partly in the dielectric. The attenuation due to conductor loss is given approximately by 

0

/ ,s
c

R
Np m

Z W
   …2.7 

where 0 / 2sR    is the surface resistivity of the conductor. For most micro strip 

substrates, conductor loss is much more significant than dielectric loss; exceptions may occur 

with some semiconductor substrates, however. 

2.3 An Approximate Electrostatic Solution 

We now look at an approximate quasi-static solution for the micro strip line, so that the 

appearance of design equations like those of eqn. 2.3-2.5 is not a complete mystery. This 

analysis is very similar to that carried out for strip line in the previous section. As in that 

analysis, it is again convenient to place conducting sidewalls on the micro strip line, as shown 

in Figure 2.3. The sidewalls are placed at / 2,x a where ,a d so that the walls should not 

perturb the field lines localized around the strip conductor. We than can solve Laplace's 

equation in the region between the sidewalls : 

 
2

, 0,
1

x y                                                for / 2, 0x a y     … 2.8 

with boundary conditions, 

 

 

, 0 / 2

, 0 0,

x y at x a

x y at y

  

   
 … 2.9 a, b 
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Fig. 2.3 Geometry of a microstrip line with conduction sidewalls 

Since there are two regions defined by the air/dielectric interface, with a charge 

discontinuity on the strip, we will have separate expressions for  ,x y in these regions. 

Solving (2.8) by the method of separation of variables and applying the boundary conditions of 

(2.9 a, b) gives the general condition as 

 
1

/

1

cos sinh 0

,

cos

n

n
odd

n y a

n

n
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n x n y
A for y d

a a
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 
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
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
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
 

  






 … 2.10 

Now the potential must be continuous at y = d, so from (2.10) we have that  

/sinh n d a

n n

n d
A B e

a


  … 2.11 

so  ,x y can be written as 

 
1

( )/

1

cos sinh 0

,

cos sinh

n

n
odd

n y d a

n

n
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n x n y
A for y d

a a

x y
n x n d

A e for d y
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

 

 






 




 


 

  






 … 2.12 

The remaining constants, An can be found by considering the surface charge density on 

the strip. We first find / :yE y    

 

1

/

1

cos cosh 0

cos sinh

n

n
odd

y

n y d a

n

n
odd

n n x n y
A for y d

a a a

E
n n x n d

A e for d y
a a a



  

  






 



  
   

 


      





 … 2.13 

Then the surface charge density on the strip at y d  is 
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   

   0 0

0

1

, ,

, ,

cos sinh cosh

s y y

y r y

n r

n
odd

D x y d D x y d

E x y d E x y d

n n x n d n d
A

a a a a



   

 

 





   

    

   
    

   


 … 2.14 

Which is seen to be a Fourier series in x for the surface charge density, 
s . As for the 

strip line case, we can approximate the charge density on the micro strip line by a uniform 

distribution: 

 
1 / 2

0 / 2
s

for x W
x

for x W


 




 … 2.15 

Equation (2.15) to (2.14) and using the orthogonally of the cos /n x a  functions gives the 

constants nA as 

     
2

0

4 sin / 2

sinh / cosh /
n

r

a n W a
A

n n d a n d a



  


   

 … 2.16 

The voltage of the strip relative to the ground plane is 

 
10

0, sinh

d

y n

n
odd

n d
V E x y dy A

a





    … 2.17 

The total charge, per unit length, on the Centre strip is 

 
/2

/2

/ ,

W

s

W

Q x dx W C m


   … 2.18 

so the static capacitance per unit length of the micro strip line is 

   

     
2

1 0

1

4 sin / 2 sinh /

sinh / cosh /n r
odd

Q
C

a n W a n d aV

n W n d a n d a

 

  





 

   


 … 2.19 

Now to find the effective dielectric constant, we consider two cases of capacitance: 

Let C = capacitance per unit length of the micro strip line with a dielectric substrate  1r   

Let C0 = capacitance per unit length of the micro strip line with an air dielectric  1r   

Since capacitance is proportional to the dielectric constant of the material homogenously 

filling the region around the conductors, we have that 

0

e

C

C
   … 2.20 

So (2.20) can be evaluated by computing (2.19) twice; once with r equal to the 

dielectric constant of the substrate (for C), and then with  01r forC  . The characteristic 

impedance is then 

http://www.ijrar.org/


© 2023 IJRAR March 2023, Volume 10, Issue 1                   www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRARTH00052 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 858 
 

                             0

1 e

p

Z
v C cC


   … 2.21 

Where 83 10 / sec.c m   

CHAPTER -3 

BASIC CONCEPTS AND THEORIES OF FILTER 

3.1 General Definitions 

The transfer function of a two-part filter network is a mathematical description of network 

response characteristic, namely, a mathematical expression of 
12S . On many occasions, an 

amplitude-squared transfer function for a lossless passive filter network is defined as 

  
 1

2

2 2 2

1

1 n

S j
F

 
 

 … (1) 

Where  is a ripple constant,  nF  represents a filtering or characteristic function, and   is a 

frequency variable of a low pass prototype filter that has a cutoff frequency at c   for 1c   

(rad/s). Frequency transformations to the usual radian frequency for practical low pass, high 

pass, bandpass and band stop filters will be discussed later on. 

For linear, time-invariant networks, the transfer function may be defined as a rational 

function, that is 

 
 

 12

N
S

D





  … (2) 

Where  N   and  D   are polynomials in a complex frequency variable p j    . For a 

lossless passive network, the neper frequency 0   and p j  . To find a realizable rational 

transfer function that produces response characteristics approximating the required response is 

the so-called approximation problem, and in many cases, the rational transfer function of (2) 

can be constructed from the amplitude-squared transfer function of (1). 

For a given transfer function of (1), the insertion loss response of the filter, following the 

conventional definition, can be computed by 

  
 

2

21

1
10logAL dB

S j
 


 … (3) 

Since 
2 2

11 21 1S S  for a lossless, passive two-port network, the return loss response of the filter 

can be found as 

    
2

2110log 1RL S j    
 

 … (4) 

If a rational transfer function is available, the phase response of the filter can be found as 
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  21 21rgA S j    … (5) 

Then the group delay response of this network can be calculated by 

  
 21

d

d

d


 
 

 
  Seconds … (6) 

Where  21   is in radians and is in radians per second. 

3.2 The Poles and Zeros on the Complex Plane 

The  ,  plane, where a rational transfer function is defined, is called the complex plane or the 

p-plane. The horizontal axis of this plane is called the real or  –axis, and the vertical axis is 

called the imaginary or j –axis. The values of p at which the function becomes zero are the 

zeros of the function, and the values of p at which the function becomes infinite are the 

singularities (usually the poles) of the function. Therefore, the zeros of  
12S p are the roots of 

the numerator N (p) and the poles of  
12S p are the roots of denominator D (p). 

These poles will be the natural frequencies of the filter whose response is described by

 
12S p . For the filter to be stable, these natural frequencies must lie in the left half of the p-

plane, or on the imaginary axis. If this were not so, the oscillations would be of exponentially 

increasing magnitude with respect to time, a condition that is impossible in a passive network. 

Hence, D (p) is a Hurwitz polynomial i.e. its roots (or zero’s) are in the inside of the left half-

plane, or on the j –axis, whereas the roots (or zero’s) of N (P) may occur anywhere on the 

entire complex plane. The zeros of N (p) are called finite-frequency transmission zeros of the 

filter. 

The poles and zeros of a rational transfer function may be depicted on the p-plane. We 

will see in the following the different types of transfer functions will be distinguished from 

their pole-zero patterns of the diagram. 

3.3 Butterworth (Maximally Flat) Response 

The amplitude-squared transfer function for Butterworth, filters that have an insertion loss 

LAy=3.01 dB at the cutoff frequency 1c  is given by 

  
1

2

2 2

1

1 n
S j 


 … (7) 

Where n is the degree or the order of filter, which corresponds to the number of reactive 

elements required in the low pass prototype filter. This type of response is also referred to as 

maximally flat because its amplitude-squared transfer function defined in (7) has the maximum 

number of (2n – 1) zero derivatives at 0 . Therefore, the maximally flat approximation on the 

ideal low pass filtering the pass-band is best at 0 ,  but deteriorates as   approaches the cutoff 

frequency c . Figure 3.1 shows a typical maximally flat response. 
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Fig. 3.1. Butterworth (maximally flat) low pass response 

A rational transfer function constructed from (7) is 

  
 12

1

1

i i

S p
P P




 

 … (8) 

With 
 2 1

exp
2

i

i
P j






  

There is no finite-frequency transmission zero [all the zeros of  
12S p  are at infinity], and the 

poles pi, lie on the unit circle in the left half-plane at equal angular spacing, since 1ip   and Arg 

 2 1

2
i

i
p






 . This is illustrated in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Pole distribution for Butterworth (maximally flat) response. 

Figure 3.2 plots the two typical oscillating curves for n=4 and n=5. An important 

property of this is that if , can be found such that  nF    has equal ripples in the passband, it 

will automatically have equal ripples in the stopband. The parameter , is the frequency at 

which the equal-ripple stopband starts. For n even  n nF M  is required, which can be used to 

define the minimum in the stopband for a specified passband ripple constant . 
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The transfer function can lead to expressions containing elliptic functions; for this 

reason, filters that display such a response are called elliptic function filters, or simply elliptic 

filters. They may also occasionally be referred to as Cauer filters, after the person who first 

introduced the function of this type. 

 

 

 

 

 

 

 

 

 

Fig. 3.3 : Plot of elliptic rational function. 

3.4 Gaussian (Maximally Flat Group-Delay) Response 

The Gaussian response is approximated by a rational transfer function 

  
1

0
2

0

n k

kk

a
S p

a p





 … (9) 

Where p j    is the normalized complex frequency variable, and the coefficients 

 
 

 

2

2 ! !
k n k

n k
a

k n k





 … (10) 

This transfer function possess a group delay that has maximum possible number of zero 

derivatives with respect to   at 0 , which is why it is said to have maximally flat group delay 

around 0 and is in a sense complementary to the Butterworth response, which has a 

maximally flat amplitude. The above maximally flat group delay approximation was originally 

derived by W. E. Thomson. The resulting polynomials in (9) are related to the Bessel functions. 

For these reasons, the filters of this type are also called Bessel and or Thompson filters. 
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Figure 3.4 shows two typical Gaussian responses for n=3 and n=5, which are obtained 

from (9). In general, the Gaussian filters have a poor selectivity, as can be seen from the 

amplitude responses in Figure 3(a). With increasing filter order n, the selectivity improves 

group delay little. 

 

 

 

 

 

 

 

Fig. 3.4 : Gaussian (maximally flat group-delay) response : (a) amplitude (b) and the insertion loss in decibels 

approaches the Gaussian form 

   

    

2

2 1
10log

n

AL e dB




   … (11) 

Use of this equation gives the 3 dB bandwidth as 

  3 2 1 2dB n In    … (12) 

Which approximation is good for 3n . Hence unlike the Butterworth response, the 3 dB 

bandwidth of a Gaussian filter is a function of the filter order; the higher the filter order, the 

wider the 3 dB bandwidth. 

However, the Gaussian filters have a quite flat group delay in the passband, as indicated 

in Figure 3(b), where the group delay is normalized by 0 , which is the delay at the zero 

frequency and is inversely proportional to the bandwidth of the passband. If we let 0 0 1    

radian per second be a reference bandwidth, then 0 1  second. With increasing filter order n, 

the group delay is flat over a wider frequency range. Therefore, a high-order Gaussian filter is 

usually used for achieving a flat group delay over a large passband. 

 

 

3.5 All-Pass Response 

External group delay equalizers, which are realized using all-pass networks, are widely used in 

communications systems. The transfer function of an all-pass network is defined as 
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 

 21

D p
S

D p


  … (13) 

Where p j    is the complex frequency variable and D(p) is a strict Hurwitz polynomial. At 

real frequencies          
2

21 21 21 21. 1p j S j S p S p S p        so that the amplitude response is unity 

at all frequencies, which is why it is called the all-pass network. However, there will be phase 

shift and group delay produced by the all-pass network. We may express (13) at real 

frequencies as    21

21

j
S j e

 
  , the phase shift of an all-pass network is then 

    21 21jIn S j     … (14) 

and the group delay is given by 

 

 
    

 

 

2121

1 1 ( )

( )

d

p j

d InS jd
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d d

dD p dD p dp
j
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

 

 
  

 

 
  

  

 … (15) 

An expression for a strict Hurwitz polynomial D(p) is 

      
11

( )

n m

k i i i i
kk

D p p p j p j  


  
                       

  
   … (16) 

where k for 0k   are the real left-hand roots, and 1 1j    for 
1 0   and 1 0  are the complex 

left-hand roots of D(p), respectively. If all poles and zeros of an all-pass network are located 

along the –axis, such a network is said to consist of C-type sections and therefore referred to as 

C-type all-pass network. On the other hand, if the poles and zeros of the transfer function in 

(13) are all complex with quadrantile symmetry about the origin of the complex plane, the 

resultant network is referred to as D-type all-pass network consisting of D-type sections only. 

In practice, a desired all-pass network may be constructed by a cascade connection of 

individual C-type and D-type sections. Therefore, it is interesting to discuss their characteristics 

separately. 

For a single section C-type all-pass network, the transfer function is 

  
12

k

k

p
S p

p





 



 … (17)  

and the group delay found by (15) is 

  
2 2

2 k
d

k

T



 


 … (18) 

The pole-zero diagram and group delay characteristics of this network are illustrated in Figure 

3.5. 

Similarly, for a single-section, D-type, all-pass network, the transfer function is 

  
   

   1

1 1 1 1

2

1 1 1 1

.

.

p j p j
S p

p j p j

 

 

               
             

 … (19) 
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and the group delay is 

  
 

   

2 2 2

1 1 1

2 22 2 2

1 1 1

4

2
dT

 

 

  
  

    
 

 … (20) 

Figure 3.5 depicts the pole-zero diagram and group delay characteristics of this network. 

  

 

 

 

 

 

 

Fig. 3.5 : Characteristics of single-section C-type all-pass network : (a) pole zero diagram (b) group delay 

response. 

  

 

 

 

 

 

Fig. 3.6 : Characteristics of single-section D-type, all-pass network : (a) pole zero diagram (b) group delay 

response. 

3.7 Elliptic Function Low pass Prototype Filters 

Figure 7 illustrates two commonly used network structures for elliptic function low pass 

prototype filters. In figure 7(a), the series branches of parallel-resonant circuits are introduced 

for realizing the finite-frequency transmission zeros, since they block transmission by having 

infinite series impedance (open-circuit) at resonance. For this form of the elliptic function low 

pass prototype, g: for odd i(i = 1, 3,…) represent the capacitance of a shunt capacitor, g : for 

even i(i = 2, 4, …) represent the inductance of an inductor, and the primed g : for even i(i = 2, 

4, …) are the capacitance of a capacitor in a series branch of parallel-resonant circuit. For the 

dual realization form in Figure 7(b), the shunt branches of series-resonant circuits are used for 

implementing the finite-frequency transmission zeros, since they short out transmission at 

resonance. In this case, referring to Figure 7(b), g: for odd i(i = 1, 3,…) are the inductance of a 

series inductor, g:for odd i(i = 2, 4, …) are the capacitance of a capacitor, and primed g: for 
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even i(i = 2, 4, …) indicate the inductance of an inductor in a shunt branch of series-resonant 

circuit. Again, either form may be used, because both give the same response. 

3.8 Low pass Transformation 

The frequency transformation from a low pass to a practical low pass filter having a cutoff 

frequency 
e in the angular frequency axis is simply given by 

 c

c




 
 

 
 … (21) 

 

 

 

 

 

 

 

Fig. 3.7 : Low pass prototype filters for elliptic function filters with (a) series parallel-resonant branches, (b) its 

dual with shunt series-resonant branches. 

Applying (21) together with the impedance scaling described above yields the element 

transformation: 

 0
c

c

L y g


 
  
 

               For g representing the inductance 

 
0

c

c

g
C

y

 
  
 

                For representing the capacitance … (22) 
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Which is shown in Figure 8(a). To determine the use of the element transformation, let us 

consider design of a practical low pass filter with a cutoff frequency 2cf GHz and a source 

impedance
0 50Z   . A 3-pole Butterworth low pass prototype with the structure is chosen for 

this example, which gives 0 4 1 21.0 , 1.0g g mhos g g H    and for 1.0c

rad

s
  . The impedance 

scaling factor is
0 50  . The angular cutoff frequency 92 2 10c

rad

s
    . We find 

1 2 3.979L L nH 

and
2 3.183C pF . The resultant low pass filter is illustrated in Figure 3.8(b). 

 

 

 

 

 

 

 

 

 

Fig. 3.8 : Low pass prototype to low pass transformation : (a) basic element transformation,(b) a practical low 

pass filter based on the transformation. 

3.9 Filters with Immittance Inverters 

It can be shown by network analysis that a series inductance with an inverter on each side looks 

like a shunt capacitance from its exterior terminals, as indicated in Figure 9(a). Likewise, a 

shunt capacitance with an inverter on each side looks like a series inductance from its external 

terminals, as demonstrated in Figure 9(b). Also as indicated inverters have the ability to shift 

impedance or admittance levels depending on the choice of K or J parameters. Making use of 

these properties enables us to convert a filter circuit to an equivalent form that would be more 

convenient for implementation with microwave structures. 

For example, the two common low pass prototype structures may be converted into the 

forms shown in Figure 10, where the g: values are the original prototype element values as 

defined before. The new element values, such as 0 1 1 1, , , ,g g e gZ Z L Y Y  and 0C may be chosen 

arbitrarily and the filter response will be identical to that of the original prototype, provided 

that the Immittance inverter parameters , 1i iK  and , 1i iJ   are specified as indicated by the equations 

in Figure 10. These equations can be derived by expanding the input Immittance of the original 
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prototype networks and the equivalent ones in continued fractions and by equating 

corresponding terms. 

 

 

 

 

 

 

 

 

 

Fig. 3.9 : (a) Immittance inverters used to convert a shunt capacitance into an equivalent circuit with series 

inductance (b) Immittance inverters used to convert a series inductance into an equivalent circuit with shunt 

capacitance. 

Since, ideally, Immittance inverter parameters are frequency invariable, the low-pass 

filter networks in Figure 10 can easily be transformed to other types of filters by applying the 

element transformations similar to those described in the previous section. For instance. Figure 

11 illustrates two bandpass filters using Immittance inverters. In the case of Figure 3.11(a), 

only series resonators are involved, whereas the filter in Figure 3.11(b) consists of only shunt 

parallel resonators. The element transformations from Figure 3.10(a) to Figure 3.10(a) are 
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Fig. 3.10: Low pass prototype filters modified to include Immittance inverter obtained as follows. Since the 

source impedances are assumed the same in the both filters as indicated, no impedance scaling is required and 

the scaling factor 0 1Y  . Now, viewing 1L as inductive g, and transforming the inductors of the low pass filter to 

the series resonators of the bandpass filter, we obtain 

1 1
c

S

e

L L
FBW




 
 
 

 

1 2

0 1

1
S

S

C
L

  

As mentioned above, the K parameters must remain unchanged with respect to the 

frequency transformation. Replacing 1L  in the equations in Figure 10(a) with 

1 1
e

S
c

FBW
L L

   
 yields the equations in Figure 10(a). Similarly the transformations and 

equations in Figure 11(b) can be obtained on a dual basis. 
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Fig. 3.11 : Bandpass filters using Immittance inverters. 

Two important generalizations, shown in Figure 3.11, are obtained by replacing the 

lumped LC resonators by distributed circuits. Distributed circuits can be microwave cavities, 

micro strip resonators or any other suitable resonant structures. In the ideal case, the 

reactance’s or susceptances of the distributed circuits (not restricted to bandpass filters) should 

equal those of the lumped resonators at all frequencies. In practice, they approximate the 

reactance’s or susceptances of the lumped resonators only near resonance. Nevertheless, this is 

sufficient for narrow band filters. For convenience, the distributed resonator 

reactance/susceptances and reactance/susceptances slope are made equal to their corresponding 

lumped-resonator values at band center. For this, two quantities, called the reactance slope 

parameter and susceptances slope parameter, respectively, are introduced. The reactance slope 

parameter for resonators having zero reactance at center frequency e is defined by 

  
 

0

0

2

dX
X

d
 






  … (23) 

Where  X  is the reactance of the distributed resonator? In the dual case, the 

susceptances slope parameter for resonators having zero susceptances at center frequency e  is 

defined by 
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Fig. 3.12 : Generalized bandpass filters (including distributed elements) using Immittance inverters. 

Where  B  is the susceptances of the distributed resonator. It can be shown that the 

reactance slope parameter of a lumped LC series resonator is 0L  and the susceptances slope 

parameters of a lumped LC parallel resonator is 0C . Thus, replacing 0 1SL  and 1pC in the 

equations in Figure 9 with the general terms 1x  and 1b  as defined by (23) and (24), respectively, 

results in the equations indicated in Figure 3.12.   
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CHAPTER -4 

WORKING PRINCIPLE OF HFSS & CST 

I have studied the analysis of Micro strip Phase Bridge using two software’s namely CST 

and HFSS. CST works on Finite Integration Technique (FTT) and HFSS works on Finite 

Element Method (FEM). 

4.1 FINITE ELEMENT METHOD (FEM) 

The finite element method (FEM) (sometimes referred to as finite element analysis) is a 

numerical technique for finding approximate solutions of partial differential equations (PDE) 

as well as of integral equations. The solution approach is based either on eliminating the 

differential equation completely (steady state problems), or rendering the PDE into an 

approximating system of ordinary differential equations, which are then numerically integrated 

using standard techniques such as Euler's method, Runge-Kutta, etc. In solving partial different 

equations, the primary challenge is to create an equation that approximates the equation to be 

studied, but is numerically stable, meaning that errors in the input data and intermediate 

calculations do not accumulate and cause the resulting output to be meaningless. There are 

many ways of doing this, all with advantages and disadvantages. The Finite Element Method is 

a good choice for solving partial differential equations over complex domains (like cars and oil 

pipelines), when the domain changes (as during a solid state reaction with a moving boundary), 

when the desired precision varies over the entire domain, or when the solution lacks 

smoothness. For instance, in a frontal crash simulation it is possible to increase prediction 

accuracy in "important" areas like the front of the car and reduce it in its rear (thus reducing 

cost of the simulation); Another example would be the simulation of the weather pattern on 

Earth, where it is more important to have accurate predictions over land than over wide-open 

sea. 

4.2 Technical discussion 

We will illustrate the finite element method using two sample problems from which the 

general method can be extrapolated. It is assumed that the reader is familiar with calculus and 

linear algebra. P1 is a one-dimensional problem 

 
11 (0,1)

1 :
(0) (1) 0

u f in
P

u u

 


 
 … 4.1 

Where f is given and u is an unknown function of x, and u11 is the second derivative of u with 

respect to x. The two-dimensional sample problem is the Dirichlet problem 

 2 :
0

xx yyu u f in
P

u on

  


 
 … 4.2 

Where is a connected open region in the (x, y) plane whose boundary is "nice" (e.g., a smooth 

manifold or a polygon), and u xx and u yy denote the second derivatives with respect to x and 
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y, respectively. The problem P1 can be solved "directly" by computing antiderivatives. 

However, this method of solving the boundary value problem works only when there is only 

one spatial dimension and does not generalize to higher-dimensional problems or to problems 

like u + u" = f. For this reason, we will develop the finite element method for P1 and outline its 

generalization to P2. Our explanation will proceed in two steps, which mirror two essential 

steps one must take to solve a boundary value problem (BVP) using the FEM. 

 In the first step, one rephrases the original BVP in its weak, or variational form. Little to 

no computation is usually required for this step, the transformation is done by hand on 

paper. 

 The second step is the discretization, where the weak form is discretized in a finite 

dimensional. 

After this second step, we have concrete formulae for a large but finite dimensional linear 

problem whose solution will approximately solve the original BVP. This finite dimensional 

problem is then implemented on a computer. 

4.3 Variational formulation 

The first step is to convert P1 and P2 into their variational equivalents, or Weak formulation. If 

u solves P1, then for any smooth function v that satisfies the displacement boundary conditions, 

i.e. v = 0 at x = 0 and x = 1, we have 

1 1

0 0

( ) ( ) "( ) ( )f x v x dx u x v x dx   … (1) 

Conversely, if u with u(0) = u(1) = 0 satisfies (1) for every smooth function v(x) then one may 

show that this u will solve P1. The proof is easier for twice continuously differentiable u (mean 

value theorem), but may be proved in a distributional sense as well. By using integration by 

parts on the right-hand-side of (1), we obtain 

1 1

0 0

1

1

0

0

1

0

( ) ( ) "( ) ( )

'( ) ( ) '( ) ( )

'( ) ' ( ) ( , )

f x v x dx u x v x dx

u x v x u x v x dx

u x v x dx u v



 

  

 





 …4.3 

where we have used the assumption that v(0) = v(1) = 0 

4.4 A proof outline of existence and uniqueness of the solution 

We can loosely think of 1

0 (0,1)H to be the absolutely continuous functions of (0,1) that are 0 at x 

= 0 and x = 1 (see Sobolev spaces). Such function are (weakly) "once differentiable" and it 

turns out that the symmetric bilinear map then defines an inner product which turns 1

0 (0,1)H into 

a Hilbert space (a detailed proof is nontrivial). On the other hand, the left-hand-side
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1

0
( ) ( )f x v x dx  is also an inner product, this time on the Lp space L2 (0,1). An application of the 

Riesz representation theorem for Hilbert spaces shows that there is a unique u solving (2) and 

therefore P1. This solution is a-priori only a member of, but using elliptic regularity, will be 

smooth if f is. 

4.5 The variational form of P2 

If we integrate by parts using a form of Green's theorem, we see that if u solves P2, then for 

any v, 

. ( , )fvds u vds u v
 

      …4.4 

Where denotes the gradient and denotes the dot product in the two-dimensional plane. Once 

more can be turned into an inner product on a suitable space of "once differentiable" functions 

of that are zero on. We have also assumed that (see Sobolev spaces). Existence and uniqueness 

of the solution can also be shown. 

4.6 Discretization 

The basic idea is to replace the infinite dimensional linear problem: 

Find 1

0u H  such that 
1

0 , ( , )H u v fv     …4.5 

With a finite dimensional version: 

Find u V such that 

, ( , )V u v fv     …4.6 

Where V is a finite dimensional subspace of 1

0H . There are many possible choices for V (one 

possibility leads to the spectral method). However, for the finite element method we take V to 

be a space of piecewise linear functions. For problem P1, we take the interval (0,1), choose n 

values of x with 0 = x 0 < x 1 < …< x n < x n + 1 = 1 and we define V by 

  : 0,1 :V v R v  is continuous,  1,k kV x x  is linear for 

0,......, , (0) (1) 0k n and v v    

Where we define x (0) = 0 and x (n+1) = 1. Observe that functions in V are not differentiable 

according to the elementary definition of calculus. Indeed, if v V then the derivative is 

typically not defined at any x = x k, k =1,…., n. However, the derivative exists at every other 

value of x and one can use this derivative for the purpose of integration by parts. 

For problem P2, we need V to be a set of functions of  . In the figure on the right, we have 

illustrated a triangulation of 15 sided polygonal region   in the plane (below), and a piecewise 

linear function (above, in color) of this polygon which is linear on each triangle of the 
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triangulation; the space V would consist of functions that are linear on each triangle of the 

chosen triangulation. 

One often reads V h instead of V in the literature. The reason is that one hopes that as the 

underlying triangular grid becomes finer and finer, the solution of the discrete problem (3) will 

in some sense converge the solution of the original boundary value problem P2. The 

triangulation is then indexed by a real valued parameter h > 0 which one takes to be very small. 

This parameter will be related to the size of the largest or average triangle in the triangulation. 

As we refine the triangulation, the space of piecewise linear functions V must also change with 

h, hence the notation V h. 

Since we do not perform such an analysis, we will not use this notation. 

 

 

 

 

 

 

 

 

Fig. 4.1 

4.7 Choosing a basis 

 

 

 

 

 

 

 

Fig. 4.2 choosing a basis function 

To complete the discretization, we must select a basis of V. In the one-dimensional case, for 

each control point x k we will choose the piecewise linear function v k in V whose value is 1 at 

x k and zero at every , ,jx j k  i.e., 
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





  

For k =1,…,n; this basis is a shifted and scaled tent function. For the two-dimensional case, we 

choose again one basis function v k per vertex x k of the triangulation of the planar region. The 

function v k is the unique function of V whose value is 1 at x k zero at every ,jx j k . 

Depending on the author, the word "element" in "finite element method" refers either to 

the triangles in the domain, the piecewise linear basis function, or both. So for instance, an 

author interested in curved domains might replace the triangles with curved primitives, in 

which case he might describe his elements as being curvilinear. On the other hand, some 

authors replace "piecewise linear" by "piecewise quadratic" or even "piecewise polynomial". 

The author might then say "higher order element" instead of "higher degree polynomial". Finite 

element method is not restricted to triangles (or tetrahedral in 3-d, or higher order simplexes in 

multidimensional spaces), but can be defined on quadrilateral sub domains (hexahedra, prisms, 

or pyramids in 3-d, and so on). Higher order shapes (curvilinear elements) can be defined with 

polynomial and even non-polynomial shapes (e.g. ellipse or circle). Examples of methods that 

use higher degree piecewise polynomial basis functions are the hp-FEM and spectral FEM. 

More advanced implementations (adaptive finite element methods) utilize a method to assess 

the quality of the results (based on error estimation theory) and modify the mesh during the 

solution aiming to achieve approximate solution within some bounds from the 'exact' solution 

of the continuum problem. Mesh adaptivity may utilize various techniques, the most popular 

are; 

1) Moving nodes (r-adaptivity) 

2) Refining (and unrefining) elements (h-adaptivity) 

3) Changing order of base functions (p-adaptivity) 

4) Combinations of the above (hp-adaptivity) 

4.8 FINITE INTEGRATION TECHNIQUE 

CST MICROWAVE STUDIO is a general-purpose electromagnetic simulator based on 

the Finite Integration Technique (FIT), first proposed by Weiland in 1976/1977. This numerical 

method provides a universal spatial discretization scheme, applicable to various 

Electromagnetic problems, ranging from static field calculations to high frequency application 

in time or frequency domain. In the following section the main aspects of this procedure will be 

explained and afterwards extended to specialized forms concerning the different solver types. 

Unlike most numerical methods, FIT discretizes the following integral form of Maxwell's 

equation, rather than the differential one: 
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. ( / ). .
A V

A v

E ds B t d A D dA dV
 

        

. (( / ) ). . 0
A V

A

H ds D t J d A B dA
 

        

In order to solve these equations numerically a finite calculation domain is defined, 

enclosing the considered application problem. By creating suitable mesh system, this domain is 

split up into several small cuboids, so-called grid cells. This first or primary mesh can be 

visualized in CST MICROWAVE STUDIO in the Mesh View, however, internally a second or 

dual mesh is set up orthogonally to the first one. 

The spatial discretization of Maxwell's equations is finally performed on this two 

orthogonal grid systems, where the new degrees of freedom are introduced as integral values as 

well. Referring to the following picture, the electric grid voltages e and magnetic facet fluxes b 

are allocated on the primary grid G and the dielectric facet fluxes d as well as the magnetic grid 

voltages h on the dual rid G (indicated by the tilde): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 

Now Maxwell's equations are formulated for each of the cell facets separately as will be 

demonstrated in the following. Considering Faraday's law, the closed integral on the equation's 

left side can be rewritten as a sum of four grid voltages without introducing any supplementary 

errors. Consequently, the time derivative of the magnetic flux defined on the enclosed primary 

cell facet represents the right-hand side of the equation, as illustrated in the figure below. By 

repeating this procedure for all available cell facets, the calculation rule can be summarized in 

an elegant matrix formulation, introducing the topological matrix C as the discrete equivalent 

of the analytical curl operator: 
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Fig. 4.4 

Applying this scheme to Ampere's law on the dual grid involves the definition of a 

corresponding discrete curl operator C. Similarly the discretization of the remaining divergence 

equations (1b) introduces discrete divergence operators Sand S, belonging to the primary and 

dual grid, respectively. As previously indicated, these discrete matrix operators just consist of 

elements '0', '1' and '-1', representing merely topological information. Finally we obtain the 

complete discretized set of the so-called Maxwell's Grid Equations (MGE's): 

𝐶𝑒 = −(𝑑𝑏 𝑑𝑡)                            ⁄ 𝐶̃ℎ = (𝑑 𝑑𝑡⁄ )𝑑 + 𝑗 

𝑆̃𝑑 = 𝑞                                              𝑆𝑏 = 0 

Compared to the continuous form of Maxwell's equations, the similarity between both 

descriptions is obvious. Once again it should be mentioned that no additional error has yet been 

introduced. This essential point of FIT discretization is reflected in the fact that important 

properties of the continuous gradient, curl and divergence operation are still maintained in grid 

space: 

𝑆𝐶 = 𝑆̃𝐶̃ = 0              ⟺            𝑑𝑖𝑣 𝑟𝑜𝑡 = 0 

𝐶𝑆̃𝑇 = 𝐶̃𝑆𝑇 = 0      ⟺      𝑟𝑜𝑡 𝑔𝑟𝑎𝑑 = 0 

At this point it should be mentioned that even the spatial discretization of a numerical 

algorithm could cause long term instability. However, based on the presented fundamental 

relations (3), it can be shown that the FIT formulation is not affected by such problems, since 

the set of MGE's (2) maintain energy and charge conservation [2]. 

Finally, the missing material equations introduce the inevitable numerical inaccuracy 

due to the spatial discretization. By defining the necessary relations between voltage and fluxes 

their integral values have to be approximated over the grid edges and cell areas, respectively. 

Consequently, the resulting coefficients depend on the averaged material parameters as well as 

on the spatial resolution of the grid and are summarized again in correspondent matrices: 

𝐷̃ = 𝜀𝐸̃                                         𝑑 = 𝑀𝜀𝑒 

𝐵⃗ = 𝜇𝐻⃗⃗                     ⟹            𝑏 = 𝑀𝜇ℎ 

𝐽 = 𝜎𝐸̃ + 𝐽                                 𝑗 = 𝑀𝜎𝑒 + 𝑗𝑠 
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Now all matrix equations are available to solve electromagnetic field problems on the 

discrete grid space. The fact that the topological and metric information is divided into 

different equations has important theoretical, numerical and algorithmic consequences [2]. 

As demonstrated, the FIT formulation is a very general method and therefore can be 

applied to all frequency ranges, from DC to high frequencies (see figure below). All 

electromagnetic field regimes are already covered by CST's software package MAFIA®, 

whose development started more than 20 years ago. 

Based on this long experience, the "STUDIO"-family development started in 1997. 

Here, several improvements concerning user interface, visualization and solver performance 

were integrated. However, the most fundamental change was the meshing strategy, the Perfect 

Boundary Approximation® (PBA) technique [3], particularly extended by the Thin Sheet 

Technique™ (TST) and the Multilevel Subgridding Scheme™ (MSS). 

 

 

 

 

 

 

 

 

Fig. 4.5 

Currently, there are two packages available: CST EM STUDIOTM (EMS), the low 

frequency package, which includes a variety of static and low frequency solvers and CST 

MICROWAVE STUDIO® (MWS), covering the high frequency range, both in transient and in 

harmonic state. 

In the case of Cartesian grids, the FIT formulation can be rewritten in time domain to 

yield standard Finite Difference Time Domain methods (FDTD). However, whereas classical 

FDTD methods are limited to staircase approximations of complex boundaries, the PBA® 

technique applied to the FIT algorithm maintains all the advantages of structured Cartesian 

grids, while allowing an accurate modeling of curved structures. 

In the figure below, the two "classical" geometry discretization are shown: the Finite 

Element Method model on the left and the FDTDrrLM model on the right. The FIT model 

together with the PBA® theory in the middle combines the advantages of the other two models. 

It offers both an excellent geometry approximation, without the segmentation of FE models and 

staircase approximation of FDTD codes, and high simulation speed, as in the FDTD and TLM 

methods. 
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Fig. 4.6 

4.9 The Micro strip Phase Bridge/Shifter simulated on CST is given below 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and that on HFSS is shown below 
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CHAPTER -5 

RESULTS 

S-Parameters 

The complete matrix representation follows: 

2 222 22

22 222 2

V VS S

S SV V

 

 

    
    

       
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The HFSS and CST results are as follows 

 

 

 

 

 

 

 

 

 

Fig. 5.1 

 

 

 

 

 

 

 

 

 

Fig. 5.2 

The signal at the input port: 
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Fig. 5.3 

The signals at the two output ports where the signals are reflected are O1, 1 and O2, 1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 
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Fig. 5.5 

The s-parameter phase in degrees are given below : 

 

 

 

 

 

 

 

 

 

Fig. 5.6 
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The Smith chart for S-Parameters in given below in CST software: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 

The smith chart for S-parameters in HFSS is given below: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 
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The total field energy through time is given below: 

 

 

 

 

 

 

 

 

Fig. 5.9 

The adaptive field energy /db is given below in CST: 

 

 

 

 

 

 

 

 

Fig. 5.10 
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The electric Field Distribution is given by: 

 

 

 

 

 

 

 

 

 

Fig. 5.11 

 

 

 

 

 

 

 

 

 

Fig. 5.12 
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Y-Parameters 

I1=Y11V1+Y12V2 

I2=Y21V1+Y22V2 

The HFSS and CST results are as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14 
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Fig. 5.15 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.16 
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Fig. 5.17 

Characteristics impedance with variable d, w, h using FDTD program 

d w h 
Characterics 

Impedence (Zo) 

0.1 1 0.01 2.4073e+013 

0.2 1 0.02 2.1793e+007 

0.3 1 0.02 2.1793e+007 

0.4 1 0.02 2.1793e+007 

0.5 1 0.02 2.1793e+007 

0.6 1 0.02 2.1793e+007 

0.7 1 0.02 2.1793e+007 

0.8 2 0.02 Inf 

0.9 2 0.02 Inf 

1.0 2 0.02 Inf 
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CONCLUSION 

The aim of the thesis work was to analyze the various characteristics of micro-strip 

phase shifter (micro-strip fitter), and to study their feed mechanism. It was also aimed to 

have a deeper understanding of the literature of the subject and to compare their results 

using two software’s CST and HFSS. The aim was achieved to a reasonable degree. 

In Chapter 2 an analysis of a simple micro-strip line is given which is used to find out 

relative ∈r , characteristic impedance (Z0), loss tangent etc. These parameters could not be 

found out for the exact design because the PEC of the design was a variable one and it 

consists of two waveguide ports, the design also consists of a metallic cylinder which 

protrudes through the dielectric to the ground plane. 

In Chapter 3 a brief discussion about the basic concepts and theory of fitter has been 

illustrated. This chapter also explains how a micro-strip phase shifter can act as a fitter. 

In Chapter 4 & 5 the theory behind both CST and HFSS software are given and the 

results is simulated at a frequency range of 6-18 GHz. The results include the S-parameters, 

Y-parameters, VSWR circle, Switch chart, Characteristics impedance (Z0), the distribution 

of electric and magnetic field. 
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